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Abstract. Monotone linkage functions provide a measure for proximi-
ties between elements and subsets of a ground set. Combining this notion
with Vapnik’s idea of support vector machines, we extend the concepts
of maximal closed set and half-space separation in finite closure systems
to those with maximum margin. In particular, we define the notion of
margin for finite closure systems by means of monotone linkage functions
and give a greedy algorithm computing a maximum margin closed set
separation for two sets efficiently. The output closed sets are maximum
margin half-spaces, i.e., form a partitioning of the ground set if the clo-
sure system is Kakutani. We have empirically evaluated our approach on
different synthetic datasets. In addition to binary classification of finite
subsets of the Euclidean space, we considered also the problem of vertex
classification in graphs. Our experimental results provide clear evidence
that maximal closed set separation with maximum margin results in a
much better predictive performance than that with arbitrary maximal
closed sets.

Keywords: closure systems · maximum margin separations · monotone
linkages · binary classification

1 Introduction

Motivated by different applications of finite closure systems, including e.g. closed
itemset mining [12], inductive logic programming [11], and formal concept analy-
sis [5], in [14] we studied the algorithmic properties of half-space and maximal
closed set separation in this kind of set systems. One of our results in [14] is a
greedy algorithm, which takes as input two sets and returns two disjoint maximal
closed sets containing them if their closures are disjoint. It is shown in [14] that
this greedy algorithm provides an algorithmic characterization of the special
class of Kakutani closure systems [2,9]. That is, for any two sets it returns two
complementary half-spaces containing them if and only if the closures of the input
sets are disjoint, where a half-space is a closed set such that its complement is
also closed. For the case that the separating maximal closed sets or half-spaces
are not unique, the greedy algorithm returns one of them selected arbitrarily.
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This is similar to Rosenblatt’s perceptron algorithm [13], which fulfills also
the minimum requirement the output hyperplane to separate the input point
sets. A major drawback of such unconstrained solutions is that they provide
no control of overfitting. This problem has been addressed by Vapnik and his
co-authors’ work on support vectors machines (SVM) [1], which have become
a well-established tool within machine learning for its well-founded theory and
excellent predictive performance on a broad range of real-world problems. In
particular, SVM resolve the problem of overfitting by separating the data points
in an inner product feature space by the hyperplane maximizing the minimum
of the distances to the sets of positive and negative examples.

Motivated by the same problem as SVM, in this work we adapt the idea
of maximum margin hyperplanes to the binary separation problems studied in
[14] for finite closure systems. We stress that our adaptation does not generalize
SVM to finite closure systems. While in case of SVM the inner product induces
a distance, in case of finite closure systems the ground set is typically not a
metric space. To overcome this problem, we assume that the closure systems
are provided by some weak measure of proximity defined by means of monotone
linkage functions [10]. While this kind of functions strongly generalize distance
functions (e.g., they are not required to fulfill symmetry or the triangle inequal-
ity), they preserve the anti-monotonicity of distances. That is, the linkage from
a point to a set is anti-monotonic for set inclusion. Similarly to SVM, this fea-
ture is essential for the separation problems considered in this work. A second
issue is how to define margins for closed set and half-space separations in fi-
nite closure systems. While there are different equivalent characterizations of
maximum margins for SVM, it turns out that their equivalence does not hold
when adapting them to abstract closure systems equipped with monotone link-
age functions. In particular, in contrast to SVM, the linkage of the set of positive
examples to a half-space can be different from that of the negative examples to
the complementary half-spaces for all half-spaces. We therefore define the margin
by the smallest linkage from the closures of the input sets to the complemen-
tary half-spaces. Furthermore, we generalize this concept to arbitrary closed set
separations as well.

Using these notions, we formulate the computational problems of finding
closed set and half-space separations maximizing the margin in finite closure
systems equipped with monotone linkage functions. This problem preserves sev-
eral key features of SVM for abstract closure systems. For the above problem we
give another greedy algorithm and prove that it is correct and requires a linear
number of evaluations of the underlying closure operator and linkage function.
We also show that for Kakutani closure systems [9], the algorithm always returns
a half-space separation of the input sets with maximum margin if and only if
the closures of the two training sets are disjoint.

We experimentally evaluated the predictive performance of our algorithm on
various synthetic datasets. Our empirical results concerning point classification
in Euclidean spaces show that our algorithm clearly outperforms the greedy
separation algorithm in [14]. In addition, we carried out several experiments with
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vertex classification in trees and also in random graphs using the shortest path
closure operator. Similarly to the other experiments, our algorithm consistently
outperformed the greedy algorithm in [14]. For space limitations we omit further
applications dealing, among others, with finite lattices, in particular, with formal
concept and subsumption lattices in inductive logic programming.

The rest of the paper is organized as follows. In Section 2 we collect the
necessary concepts and fix the notation. In Section 3 we introduce our notion
of margin defined by means of monotone linkage functions for finite closure
systems. In Section 4 we present our greedy algorithm solving closed set and
half-space separation with maximum margin and prove some of its basic formal
properties. In Section 5 we report our experimental results. Finally, in Section 6,
we conclude and formulate some problems for further study.

2 Preliminaries

In this section we collect some basic notions concerning closure systems (see,
e.g., [3,9]) and linkage functions (see, e.g., [6]) and fix the notation.

Closure Systems The power set of a set E is denoted by 2E . A set system over a
ground set E is a pair (E, C), where C ⊆ 2E ; (E, C) is a closure system if it fulfills
the axioms: (i) E ∈ C and (ii) X ∩ Y ∈ C for all X,Y ∈ C. Unless otherwise
stated, by closure systems we always mean finite closure systems, i.e., |E| <∞.
It is a well-known fact (see, e.g., [3]) that closure systems give rise to closure
operators and vice versa. More precisely, a closure operator over E is a function
ρ : 2E → 2E satisfying

i) X ⊆ ρ(X), (extensivity)
ii) ρ(X) ⊆ ρ(Y ) whenever X ⊆ Y , (monotonicity)

iii) ρ(ρ(X)) = ρ(X) (idempotency)

for all X,Y ⊆ E. The following characterization is standard (see, e.g., [3]):

Proposition 1. Let (E, C) be a closure system and ρ : 2E → 2E be the map
defined by ρ(X) =

⋂
{C ∈ C : X ⊆ C} for all X ⊆ E. Then ρ is a closure

operator and C = {C ⊆ E : ρ(C) = C}. Conversely, let ρ be a closure operator
over E. Then (E, Cρ) with Cρ = {C ⊆ E : ρ(C) = C} is a closure system.

The elements of C will be referred to as closed sets. We use the notation Cρ to
indicate that the closure system is defined by the closure operator ρ.

We will have a special interest in the following closure systems over Euclidean
spaces, graphs, and lattices1.

1. (finite convex hulls in Rd) Let E be a finite subset of Rd for some d > 0.
Then the function α : 2E → 2E defined by

α(X) = conv(X) ∩ E (1)

1 For space limitation, the applications concerning closure systems over finite lattices
will be discussed in the long version of this paper.
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for all X ⊆ E is a closure operator over E, where conv(·) denotes the convex
hull operator on Rd.

2. (shortest path closure in graphs [4]) Let G = (V,E) be a graph with vertex
set V and edge set E. Then (V, Cγ) is a closure system if

V ′ ∈ Cγ ⇐⇒ V (P ) ⊆ V ′ (2)

for all V ′ ⊆ V , u, v ∈ V ′, and P ∈ Su,v, where Su,v is the set of all shortest
paths connecting u and v in G and V (P ) denotes the set of vertices in P .

3. (closed sets in lattices [15]) Let (L;≤) be a finite lattice. Then the function
λ : 2L → 2L defined by

λ : L′ 7→ {x ∈ L | inf L′ ≤ x ≤ supL′} (3)

for all L′ ⊆ L is a closure operator, where inf L′ (resp. supL′) is the greatest
lower bound or bottom (resp. least upper bound or top) element of L′.

The primary focus of this work is on maximum margin separation in closure
systems. To formulate this problem in Section 3, we recall some definitions con-
cerning separations in finite closure systems from [14]. More precisely, let (E, C)
be a closure system and A,B ⊆ E. Then A and B are

(i) separable in (E, C) if there are disjoint closed sets CA, CB in C such that
A ⊆ CA and B ⊆ CB ,

(ii) maximal closed set separable in (E, C) if there are disjoint closed sets CA, CB
in C such that A ⊆ CA and B ⊆ CB , and there are no disjoint closed sets
C ′A ⊇ CA and C ′B ⊇ CB such that at least one of the containments is proper,

(iii) half-space separable if there are C,Cc ∈ C such that A ⊆ C and B ⊆ Cc,
where Cc = E \ C.

Regarding (iii) above, a closed set C ∈ C is a half-space if its complement Cc is
also closed. Finally, a closure system (E, C) is Kakutani [9] if and only if all pairs
of disjoint closed sets in C are half-space separable. It follows from the definitions
that no separation is possible in (E, C) if ∅ /∈ C. Therefore, in the rest of the
paper we always assume that the empty set is also closed, i.e., it is an element
of the underlying closure system.

Monotone Linkage Functions To adapt Vapnik’s idea of maximum margin sep-
aration to (abstract) finite closure systems, we need some additional formal tool
to quantify the closeness between subsets of the ground set. Such an abstract
measure for the proximity between elements and subsets of a ground set is pro-
vided by monotone linkage functions introduced by Mullat [10]. This kind of
functions preserve an important elementary property of distances from points
to sets in metric spaces and can therefore be regarded as a very general “dis-
tance” concept. More precisely, a monotone linkage function over a set E is a
map l : 2E × E → R such that

X ⊆ Y =⇒ l(X, e) ≥ l(Y, e)
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holds for all X,Y ⊆ E and e ∈ E. That is, l is anti-monotone w.r.t. set con-
tainment, which is an essential property satisfied by distances as well. Thus, all
distances give rise to monotone linkage functions; the converse is, however, not
true. Note that by applying monotone linkage functions to singletons in the first
argument, we obtain a pairwise proximity between the elements of the ground
set. However, in contrast to metric spaces, the definition does not imply sym-
metry, i.e., l({x}, y) is not necessarily equal to l({y}, x). Furthermore, l(X, e) is
not required to be zero for e ∈ X.

There are several examples of monotone linkage functions on finite and in-
finite ground sets. Below we recall some of the most popular ones to illustrate
the concept (c.f. [6] for further examples). The proof that the functions below
are all monotone linkage is left to the reader.

(i) (monotone linkage in Rd) For any distance D on Rd, define l : 2R
d×Rd → R

by l : (X, e) 7→ inf
x∈X
{D(x, e)} for all X ⊆ Rd and e ∈ Rd.

(ii) (monotone linkage in (weighted) graphs) For a (weighted) graph G = (V,E)
define l : 2V × V → R by l : (X, e) 7→ min

x∈X
{d(x, e)} for all X ⊆ V , where d

denotes the (weighted) length of a (weighted) shortest path between vertices.
(iii) (monotone linkage in graphs by maximum degree on induced subgraphs) For a

graph G = (V,E), define l : 2V ×V → R by l : (X, v) 7→ min
x∈X

(δ(v)−δG[X](x))

for all X ⊆ V and v ∈ V , where G[X] is the subgraph of G induced by X,
δ(v) the degree of v in G, and δG[X](x) the degree of x in G[X].

Monotone linkage functions have been studied intensively by Kempner [6,7,8] in
the context of clustering over set systems and convex geometries. As mentioned
above, we will apply them for defining margins in arbitrary finite closure systems.
For this purpose, we will use the following notion many times in what follows.
A monotone linkage closure system (MLCS) is a triple (E, Cρ, l), where (E, Cρ)
is a closure system and l is a monotone linkage function on E. We will always
assume that the closure operator and the linkage function are given implicitly
by oracles under the usual complexity assumption. That is, for all X ⊆ E and
e ∈ E, ρ(X) and l(X, e) are returned in unit time by the oracles.

3 Maximum Margin Separations in MLCSs

Our main goal in this paper is to adapt Vapnik’s idea [1] of maximum margin
separating hyperplanes to finite closure systems. That is, given subsets A and
B of some inner product (feature) space F , in case of support vector machines
(SVM) [1] we are interested in the hyperplane H∗ having maximum distance to
the two sets, i.e., which satisfies

d(A ∪B,H) ≤ d(A ∪B,H∗) (4)

for all hyperplanes H, where for all X,Y ⊆ F , d(X,Y ) = miny∈Y d(X, y) with d
being the distance induced by the underlying inner product. It is a well-known
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fact that if A and B are separable by a hyperplane, then H∗ is unique; H∗ is also
referred to as the maximum margin separating hyperplane, where the margin of
a separating hyperplane H is defined by

µ(A,B) = d(A,H) + d(B,H) . (5)

A key property of the margin is that it is anti-monotone w.r.t. set inclusion, i.e.,
µ(A′, B′) ≤ µ(A,B) for all A′ ⊇ A and B′ ⊇ B. Note that (4) implies

d(A,H∗) = d(B,H∗) .

Clearly, the above definitions are not (directly) applicable to maximum mar-
gin separation in closure systems because we do not assume E to be an inner
product or a metric space and have therefore no measure in general for the dis-
tance from a point e ∈ E to a subset X ⊆ E. Furthermore, while the notion
of half-spaces in Rd has been generalized to closure systems, for hyperplanes
there is no analogous definition. Hence, to be in a position to define margins,
we need some suitable functions for the abstraction of “closeness” from a point
to a subset of the ground set. They should generalize metrics, but preserve the
anti-monotonic property above at the same time.

The class of monotone linkage functions [10] defined in Section 2 fulfill both
of these requirements. In addition to generality and anti-monotonicity, they have
some further properties making this class an attractive candidate for our pur-
pose. In particular, monotone linkage functions assume neither symmetry nor
the triangle inequality.

To adapt the ordinary definition of margins to MLCSs, note that if a hyper-
plane H ⊆ Rd separates A and B, then (5) is equivalent to

µ(A,B) = d(A,H2) + d(B,H1)

= d(conv(A), H2) + d(conv(B), H1) , (6)

where H1 ⊇ A and H2 ⊇ B are the closed half-spaces defined by H (i.e., H ⊆
H1, H2). That is, in case of SVM, the margin given by a hyperplane H separating
A and B is defined by the sum of the distances from the convex hull of A to the
half-space H2 containing B and from that of B to H1 containing A.

Analogously to distances in metric spaces, we first extend linkage functions
from sets to elements to those from sets to sets. Formally, for a linkage function
l on E and subsets X,Y ⊆ E, we define the linkage l from X to Y by l(X,Y ) =
miny∈Y l(X, y). Note that this extended definition preserves anti-monotonicity,
i.e., l(X ′, Y ) ≤ l(X,Y ) holds whenever X ′ ⊇ X. Let H,Hc be half-spaces of
an MLCS (E, Cρ, l) and A ⊆ H,B ⊆ Hc for some A,B ⊆ E. Then, by analogy
with (6), our first definition of the margin of the half-space separation of A,B
by H,Hc is

µ+
H,Hc(A,B) = l(ρ(A), Hc) + l(ρ(B), H). (7)

While the above adaptation of the ordinary notion of margins to MLCSs is
relatively natural, the generalization is less obvious for maximum margin half-
space separations. This is because for SVM there are two equivalent properties
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characterizing maximum margin hyperplanes H∗ defining the closed half-spaces
H1 ⊇ A and H2 ⊇ B:

(i) H∗ maximizes µ(A,B) such that d(conv(A), H2) = d(conv(B), H1).
(ii) H∗ maximizes min{d(conv(A), H2), d(conv(B), H1)}.

That is, the maximum margin hyperplane by (i) lies in the “middle” between
the convex hulls of A and B; by (ii) it maximizes the minimum of the distances
from the two convex hulls. While (i) and (ii) are equivalent in case of SVM, the
situation is different for MLCSs as shown in the proposition below.

Proposition 2. There exists an MLCS (E, Cρ, l) and subsets A,B ⊆ E such
that µ+

H1,Hc1
(A,B) 6= µ+

H2,Hc2
(A,B), where

H1 = arg max
H,Hc∈Cρ

µ+
H,Hc(A,B) subject to l(ρ(A), Hc) = l(ρ(B), H)

H2 = arg max
H,Hc∈Cρ

min{l(ρ(A), Hc), l(ρ(B), H)} .

Proof. Consider MLCS (E, C, l) with E = {a, b, c, d} and C = {X ⊆ E : |X| 6=
3}. The monotone linkage function is defined by

l({a}, b) = l({b}, a) = l({b}, d) = 3, l(∅, e) = 3 for all e ∈ E, l({a}, c) = 2,

l({a}, d) = l({b}, c) = 1, l(X, e) = 0 for all other X ⊆ E and e ∈ E

It can be easily checked that (E, C) is a closure system and l fulfills the anti-
monotonicity property. For A = {a}, B = {b} there exist exactly two different
separating half-spaces of size 2, i.e., H1 = {a, c} and H2 = {a, d}. Using the defi-
nition of linkage on sets it follows l(A,Hc

1) = l(B,H1) = 1. Moreover, l(A,Hc
2) =

2 and l(B,H2) = 3. Thus, H1 fulfills the first property and H2 the second one,
by noting that 2 = min{l(A,Hc

2), l(B,H2)} > min{l(A,Hc
1), l(B,H1)} = 1. The

claim then follows by 2 = µ+
H1,Hc1

(A,B) 6= µ+
H2,Hc2

(A,B) = 5.

Thus, for an MLCS (E, C, l), maximizing the margin as defined in (7) subject
to l(ρ(A), Hc) = l(ρ(B), H) is not equivalent to maximizing

µH,Hc(A,B) := min{l(ρ(A), Hc), l(ρ(B), H)} (8)

over all half-space separations of A and B in (E, Cρ, l) (see, also, Figure 1).
Since our primary interest is in classification, we prefer the definition in (ii)

above and will accordingly focus on maximizing the margin defined by (8). Note
that our definition of margin differs from that in SVM, as it involves only one
part of the ordinary one.

Until now we have concentrated on half-space separations. In case of MLCSs,
two sets with disjoint closures are, however, not always half-space separable. This
motivates the relaxed concept of maximal closed set separation [14]. Fortunately,
the above definition of margin can be extended naturally to arbitrary closed
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ρ(A)

ρ(B)h′∗

h∗

µ(ρ(A), H
c )

µ(ρ(
B), H

)

H Hc

Fig. 1. Margins µ(ρ(A), Hc), µ(ρ(B), H) between closed sets ρ(A), ρ(B) and half-spaces
H,Hc together with the support elements h∗, h′∗.

sets. More precisely, for an MLCS (E, Cρ, l), let A,B ⊆ E and CA, CB ∈ Cρ with
A ⊆ CA and B ⊆ CB . Then the margin for CA and CB is defined by

µCA,CB (A,B) := min{l(ρ(A), CcA), l(ρ(B), CcB)} . (9)

Similarly to half-spaces, the definition takes only one part of the effective margin
into account. Note that (8) is the special case of (9) for CA = H and CB =
Hc. We now show that the anti-monotonicity of monotone linkages extends to
margins in MLCS. This property is essential for separations.

Lemma 3. Let (E, Cρ, l) be an MLCS, A ⊆ A′ ⊆ E, B ⊆ B′ ⊆ E, and CA ⊇
A′, CB ⊇ B′ disjoint closed sets. Then µCA,CB (A,B) ≥ µCA,CB (A′, B′).

Proof. This follows directly from the definition of margin in (9) and the anti-
monotonicity of monotone linkage functions.

Moreover, maximizing the disjoint closed sets CA and CB in Lemma 3 max-
imizes the margin at the same time, as we show in the following lemma.

Lemma 4. Let CA ⊆ C ′A and CB ⊆ C ′B be closed sets of an MLCS (E, Cρ, l)
with C ′A ∩ C ′B = ∅ and A ⊆ CA, B ⊆ CB. Then µCA,CB (A,B) ≤ µC′

A,C
′
B

(A,B).

Proof. From the definition of monotone linkages between sets it follows that
l(X,Y ) ≥ l(X,Y ′) whenever Y ⊆ Y ′. Hence, by CcA ⊇ C ′cA and CcB ⊇ C ′cB we
have

µCA,CB (A,B) = min{l(ρ(A), CcA), l(ρ(B), CcB)

≤ min{l(ρ(A), C ′cA), l(ρ(B), C ′cB)

= µC′
A,C

′
B

(A,B) .

Given a half-space separation of A,B with A ⊆ H and B ⊆ Hc, similarly to
SVM we can define the support elements by h∗ and h′∗ satisfying l(ρ(A), Hc) =
l(ρ(A), h′∗) and l(ρ(B), H) = l(ρ(B), h∗), respectively. For example, in case of
maximum margin separating half-spaces in trees, there are exactly two support
elements corresponding to the two half-spaces.
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4 The Maximum Margin Algorithm

Using (8) and (9) for the definition of margins for half-space and closed set sep-
arations, we are ready to formulate the separation problems in MLCS (E, Cρ, l):

Maximum Margin Half-Space Separation (MMHSS) Problem: Given
non-empty subsets A,B of E, find a half-space H ∈ Cρ with A ⊆ H,B ⊆ Hc

that maximizes the margin, i.e., H = arg max
H1,Hc1∈Cρ

µH1,Hc1
(A,B), if A and B are

half-space separable; o/w return “No”.
Maximum Margin Closed Set Separation (MMCSS) Problem: Given

non-empty subsets A,B of E, find disjoint closed sets CA, CB ∈ Cρ with
A ⊆ CA, B ⊆ CB that maximize the margin, i.e., for all other disjoint
closed sets C ′A ⊇ A,C ′B ⊇ B it holds that µCA,CB (A,B) ≥ µC′

A,C
′
B

(A,B), if
ρ(A) ∩ ρ(B) = ∅; o/w return “No”.

Remark 5. The MMHSS problem is a special case of the MMCSS problem for
CA = H,CB = Hc. Moreover, Lemma 4 implies that for any maximum margin
closed set separation there exists a maximal closed set separation of the same
margin. The converse is, however, not true in general.

We solve the above problems by Algorithm 1, which is based on an adaptation
of the greedy algorithm in [14]. The input to the algorithm is an MLCS (E, Cρ, l)
together with two sets A,B ⊆ E of training examples. We assume that Cρ is given
by the closure operator ρ, which returns the closure for any X ⊆ E in unit time.
Similarly, for any X ⊆ E and e ∈ E, l(X, e) is returned by another oracle in unit
time. Accordingly, we measure the complexity of Alg. 1 in terms of the number
of closure operator calls and linkage function evaluations.

In Lines 1-4, the closures of A,B are calculated and checked for disjointness.
In particular, if they are not disjoint, the algorithm terminates with “No”, as
in this case A and B are not separable by closed sets. Thus, the algorithm is
correct for this case. Consider the case that ρ(A) ∩ ρ(B) = ∅. For this case, all
elements not contained in the union of the closures of A and B are first collected
in F and sorted then by their minimum linkage from these two closed sets (Lines
5-6). The elements f in F will be processed one by one in this order and then
immediately removed, potentially together with other untreated elements (Line
13). In particular, if the linkage from the closure of A to f is not greater than
that of B or the current closed set CB containing B cannot be extended by f , we
expand the current closed set CA ⊇ A with f if it does not violate the disjointness
with CB (see Lines 9-10). Otherwise, we extend CB by f , if ρ(CB ∪{f}) remains
disjoint with CA (Lines 11-12). We then remove f and all other elements from
F (Line 13) that have been added to CA or to CB in Line 10 or 12.

An example of the algorithm to the case that (E, Cρ, l) is defined over graphs
with the shortest path closure operator is given in Figure 2. We now show that
Alg. 1 is correct (Thm. 6) and efficient (Thm. 8). Furthermore, in case of Kaku-
tani closure systems, the sets CA, CB returned in Line 15 form complementary
half-spaces with maximum margin whenever ρ(A) ∩ ρ(B) 6= ∅ (Corollary 7).
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Algorithm 1: Maximum Margin Separation

Input: a finite MLCS (E, Cρ, l) and sets A,B ⊆ E
Output: maximum margin closed sets CA, CB ∈ Cρ with A ⊆ CA and

B ⊆ CB if ρ(A) ∩ ρ(B) = ∅; “No” otherwise
1 A,CA ← ρ(A);B,CB ← ρ(B);
2 if CA ∩ CB 6= ∅ then
3 return No;
4 end
5 F ← E \ {CA ∪ CB};
6 compute min{l(A, f), l(B, f)} for all f ∈ F and sort F by these values;
7 while F 6= ∅ do
8 take the smallest element f ∈ F ;

9 if (l(A, f) ≤ l(B, f)∨ ρ(CB ∪ {f})∩CA 6= ∅)∧ ρ(CA ∪ {f})∩CB = ∅ then
10 CA ← ρ(CA ∪ {f});
11 else if ρ(CB ∪ {f}) ∩ CA = ∅ then
12 CB ← ρ(BB ∪ {f});
13 F ← F \ (CA ∪ CB ∪ {f});
14 end
15 return CA, CB

Theorem 6. Algorithm 1 solves the MMCSS problem correctly.

Proof. Let (E, Cρ, l) be an MLCS and A,B ⊆ E. By construction, the algorithm
returns “No” only for the case that ρ(A)∩ ρ(B) 6= ∅, i.e., when A and B are not
separable in Cρ, implying the correctness for this case. Otherwise, the closed sets
CA ⊇ A,CB ⊇ B returned are disjoint and hence, form a separation of A and
B. They are maximal, as only such elements of E are discarded that violate the
disjointness condition. All such elements can be removed ultimately from F , as
they do not have to be reconsidered again for the monotonicity of ρ.

Regarding optimality, suppose for contradiction that there are other disjoint
closed sets C ′A ⊇ A,C ′B ⊇ B such that

µC′
A,C

′
B

(A,B) > µCA,CB (A,B) . (10)

For symmetry, we can assume w.l.o.g. that there is an e∗ ∈ CcA such that

min{l(ρ(A), CcA), l(ρ(B), CcB)} = l(ρ(A), e∗) ,

i.e., µCA,CB (A,B) = l(ρ(A), e∗). Then, by (9) and (10) we have

l(ρ(A), e∗) < min{l(ρ(A), C ′cA), l(ρ(B), C ′cB)} (11)

implying l(ρ(A), e∗) < l(ρ(A), C ′cA). Thus, e∗ 6∈ C ′cA and hence e∗ ∈ C ′A ⊆ C ′cB .
But then, together with (11), we have l(ρ(A), e∗) < l(ρ(B), e∗).

We prove that e∗ ∈ C ′A and e∗ ∈ CcA contradicts the assumptions. Conditions
C ′A ∩C ′B = ∅ and e∗ ∈ C ′A imply that ρ(ρ(A)∪{e∗})∩ ρ(B) = ∅. Since e∗ /∈ CA,
e∗ has not been added to CA, though l(ρ(A), e∗) < l(ρ(B), e∗). But this can
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x y

Fig. 2. Maximum margin half-space separation of x and y defined by the shortest path
closure. Brighter nodes are added later to the respective class. The maximum margin
between {x} and {y} is 2 for the linkage defined by weight 1 for all edges (see Sect. 2).

happen only if there is a non-empty set G ⊆ F such that for all g ∈ G, g is
before e∗ in F , i.e., min{l(ρ(A), g), l(ρ(B), g)} ≤ l(ρ(A), e∗). Assume there is a
g ∈ G such that g ∈ CA, but g /∈ C ′A. Then g ∈ C ′cA and thus,

µC′
A,C

′
B

(A,B) = min{l(ρ(A), C ′cA), l(ρ(B), C ′cB)}
≤ min{l(ρ(A), g), l(ρ(B), g)}
≤ l(ρ(A), e∗)

= µCA,CB (A,B)

contradicting (10). Hence, for all g ∈ G, g ∈ CA implies g ∈ C ′A. In a similar
way we have that g ∈ CB implies g ∈ C ′B for all g ∈ G.

Since e ∈ CcA, e∗ /∈ CA. There are two possible cases: (i) e∗ ∈ ρ(ρ(B)∪GB) ⊆
C ′B , where GB ⊆ G is the set of elements added to ρ(B). But this contradicts
e∗ ∈ C ′cB . (ii) At the step e∗ is considered for adding to CA, there are disjoint
subsets GA, GB ⊆ G already added to ρ(A) and ρ(B), respectively, such that

ρ(ρ(ρ(A) ∪GA) ∪ {e∗}) ∩ ρ(ρ(B) ∪GB) 6= ∅.

But then, for GA ⊆ C ′A and GB ⊆ C ′B and for the monotonicity of ρ, we have
C ′A ∩ C ′B 6= ∅, as e∗ ∈ C ′A; a contradiction.

Corollary 7. For all MLCSs (E, Cρ, l), Algorithm 1 solves the MMHSS-problem
correctly if (E, Cρ) is Kakutani.

Proof. It is a direct implication of Thm. 6, as maximal disjoint closed sets are
always half-spaces in any Kakutani closure system.

Theorem 8. Algorithm 1 requires at most 2 · |E \ (ρ(A)∪ ρ(B))| evaluations of
l and 2 · |E \ (ρ(A) ∪ ρ(B))|+ 2 calls of ρ.

Proof. To sort F , we evaluate l twice for all f ∈ F with |F | = |E\(ρ(A)∪ρ(B))|.
The closure is calculated twice to determine the closures of the input sets (Line 1)
and twice for all f ∈ F in the worst case (Lines 9 and 11).
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Fig. 3. Comparison of greedy separation (a), maximum margin separation (b) and
ordinary support vector machines (c).

5 Empirical Evaluations

Potential applications of maximum margin closed set and half-space separation
in finite closure systems include, among others, graphs, lattices (e.g., in inductive
logic programming [11], formal concept analysis [5], and itemset mining [12]), and
finite point sets. For space limitations, we consider only two such applications
in this short version2. The first one, discussed in Section 5.1, is concerned with
the separation of finite point sets in Rd. For this task, we compare Alg. 1 to
the greedy algorithm in [14] as well as to ordinary SVM on synthetic datasets.
The other application described in Section 5.2 deals with vertex classification
in random trees and graphs of different sizes and edge densities. For this task,
we compare the predictive performance of our algorithm to that of the greedy
algorithm in [14].

5.1 Binary Classification in Finite Point Sets

In this section we consider point separation in MLCSs over finite subsets of
Rd. The closure systems used in these experiments are given by the traces of
convex hulls as defined by (1) in Section 2; the linkage function by means of
the Euclidean distance. Our experimental results reported below show that the
predictive performance of maximum margin separation in this kind of closure
systems is comparable to that of SVM and that it outperforms the greedy sepa-
ration algorithm in [14] on finite synthetic point sets in R2,R3 and R4 that are
half-space separable. All datasets consist of two blobs, each with 500 points, such
that the two classes are half-space separable3. In addition to the quantitative
results below, for one of the random datasets from R2 we visualize the output
obtained by the three algorithms (see Fig. 3). We selected three (in accordance
to the VC-dimension of half-spaces in R2) random training examples for each

2 The source code and the data used in the experiments reported in this section are
available at https://github.com/fseiffarth/MaxMarginSeparations.

3 For a detailed description of these synthetic datasets, the reader is referred to [14].

https://github.com/fseiffarth/MaxMarginSeparations
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Fig. 4. Accuracy and coverage of greedy separation, maximum margin separation, and
SVM for point set classification in R2,R3,R4.

class (denoted by dark blue resp. dark red). The class labels are indicated by
light blue and light red. The predictions are given by the convex hulls for the
two greedy algorithms and by the separating hyperplane for SVM.

For each of the training set sizes (see the values of the x-axes of Fig. 4), we
generated 1, 000 binary labeled random sets as indicated above. Fig. 4 shows
the averaged accuracy (top row) and coverage (bottom row) for the three al-
gorithms. The results obtained clearly show that maximum margin closed set
separation outperforms the greedy separation algorithm in [14] in predictive
performance, especially on small training set sizes. Furthermore, at least on the
random datasets we used, it is also comparable to ordinary SVM by emphasizing
that our definition is not a generalization of SVM; it is only an adaption of the
idea of maximum margin separation to finite closure systems. The accuracy of
the greedy algorithm strongly depends on the training set size and the dimension
of the space, while the accuracy of the maximum margin algorithm is constantly
above 0.9. Regarding the coverage, for which a similar behavior can be observed,
note that finite point sets in Rd are not half-space separable by MLCSs in gen-
eral. While the average coverage for the greedy algorithm drops below 0.85 in
case of R4 and 10 training samples, the maximum margin algorithm has an av-
erage coverage above 0.95 for all training set sizes. By definition, SVM always
achieve a coverage of 1.

5.2 Vertex Classification in Random Graphs

For tree and graph data we always consider the shortest path closure defined
in (2), together with the monotone linkage function for weighted graphs as de-
fined in Section 2. In case of graphs, we are interested in binary node predictions
of random connected graphs. Of course, the distribution of the labels in the
graphs plays an important role in the prediction. Clearly, in case of randomly
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distributed labels, it is impossible to make any acceptable prediction by MLCSs
defined by the closure operator in (2). Hence, we assume the following distri-
butions of node labels in case of trees and graphs, and analyze the predictive
performance of our algorithm for different graph sizes and edge densities for the
following two scenarios:

1. In case of trees, the nodes are labeled in a way that they form half-spaces,
i.e., both label sets are closed and their union is the whole tree.

2. In case of graphs, we select two nodes at random and assign the labels to
them. Then the labels of the other nodes are determined by their distance
to these center nodes. We ensure the subgraphs induced by the same class
labels to be connected and randomly flip an unbiased coin to determine the
label for nodes with the same distance.

Moreover, in both cases we additionally use only graph labelings with nearly
balanced class sizes, i.e., the minimum size of a class is at least 25% of the total
size. In case of trees, we look at random trees of different sizes, ranging from
1, 000 to 20, 000 (see Fig. 5a). For each tree size and training sample size (see the
x-axis of Fig. 5a), we generated 1, 000 binary labeled random trees in the above
way. Then, for each run of the algorithm on a tree, x/2 training examples have
been drawn at random from each of the two label sets for the input, where x is
the x-axis value in Fig. 5a. For evaluation, we run the greedy algorithm from [14]
and the maximum margin closed set separation algorithm on the training sets
to predict the class labels of the unseen examples. The average accuracy, over all
1, 000 random trees is displayed in Fig. 5a. As a baseline, we take the percentage
defined by the majority class. Note that trees induce Kakutani closure systems
and hence the coverage is always 1. One can see that with increasing training set
size, the accuracy increases up to more than 0.95 in case of maximum margin
separation and 10 training samples. Moreover, the maximum margin separation
leads to better accuracy compared to the greedy separation, especially for small
training sample sizes. Somewhat surprisingly, the tree size has no significant
impact on the predictive performance.

In case of graphs with different edge densities4, we generated 1, 000 random
graphs for each edge density (see the x-axis values in Figure 5b) and assigned
the nodes to one of the two classes as described above. The random graphs
were generated from random trees by adding additional random edges until
the required edge density has been reached. For each run of our algorithm, we
selected 1 or 2 nodes from each label class at random for training such that their
closures do not intersect. The accuracy results are shown in Fig. 5b. We present
also the coverage values, as the underlying MLCSs are not Kakutani in general.
For increasing edge density, the accuracy decreases to 0.8 in case of 4 training
samples and to 0.75 in case of 2 training samples for the edge density of 1.2.
For edge density 1.5, there are no obvious changes in the accuracy. This can be
explained by the fact that the coverage decreases to approximately 0.38 in case
of an edge density of 1.5.

4 The edge density is the number of edges minus 1 divided by the number of nodes.



Maximum Margin Separations in Finite Closure Systems 15

2 4 6 8 10

0.6

0.8

1

Training Set Size

A
cc

u
ra

cy

Tree Size 1000

greedy max margin baseline

2 4 6 8 10

Training Set Size

Tree Size 20000

(a) Comparison of greedy algorithm
and maximum margin algorithm for
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(b) Accuracy and coverage of maximum mar-
gin separation in random graphs of different
edge densities with 2 and 4 training samples.

Fig. 5. Accuracy of vertex prediction in random trees and random graphs of different
sizes and edge densities.

6 Concluding Remarks

We adapted the idea of maximum margin separation in inner product feature
spaces to abstract finite closure systems equipped with monotone linkage func-
tions. Although not all properties of ordinary maximum margin separation could
be preserved in this way, the anti-monotonicity property, a key feature of maxi-
mum margin separation, remains valid. Combining this concept with half-space
and maximal closed set separation, we presented a simple greedy algorithm and
proved that it computes a closed set separation with maximum margin correctly,
using a linear number of closure operator calls and linkage function evaluations.
In addition, for Kakutani closure systems the output closed sets are always com-
plementary maximum margin half-spaces if the closures of the input sets are
disjoint. Our experimental results on synthetic data clearly show that the maxi-
mum margin separation algorithm presented in this work outperforms the greedy
algorithm in [14] both on point classification and vertex prediction in random
trees.

We mention some interesting questions raised by this work. In contrast to
ordinary SVM, the maximum margin separating half-spaces are not unique in
general in Kakutani MLCSs. It would be important to characterize the class of
Kakutani MLCSs from the point of view of uniqueness. In particular, how does
the structure of the closure system interact with the linkage function in such
a characterization, if it exists at all. Another important issue is the complexity
of the maximum margin separation algorithm. Although the number of closure
operator calls and linkage function evaluations is linear in the cardinality of the
ground set, the algorithm is practically infeasible for MLCSs over very large
ground sets (e.g., the set of vertices of the web graph). The question towards
this direction is therefore to identify practically interesting classes of MLCSs
for which the algorithm has sublinear complexity. For example, one can show
that the greedy algorithm in [14] requires only a logarithmic number of closure
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operator calls for closure systems over finite lattices, as the closed sets in this
kind of set systems have a very succinct representation. Last but not least, is it
possible to improve the complexity of the algorithm presented in this work by
relaxing the problem settings, e.g., by allowing approximate solutions.
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