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Abstract

A common problem of classical neural network architectures is that additional
information or expert knowledge cannot be naturally integrated into the learning
process. To overcome this limitation, we propose a two-step approach consisting
of (1) generating rule functions from knowledge and (2) using these rules to define
rule based layers – a new type of dynamic neural network layer. The focus of this
work is on the second step, i.e., rule based layers that are designed to dynamically
arrange learnable parameters in the weight matrices and bias vectors depending
on the input samples. Indeed, we prove that our approach generalizes classical
feed-forward layers such as fully connected and convolutional layers by choosing
appropriate rules. As a concrete application we present rule based graph neural
networks (RuleGNNs) that overcome some limitations of ordinary graph neural
networks. Our experiments show that the predictive performance of RuleGNNs
is comparable to state-of-the-art graph classifiers using simple rules based on
Weisfeiler-Leman labeling and pattern counting. Moreover, we introduce new
synthetic benchmark graph datasets to show how to integrate expert knowledge
into RuleGNNs making them more powerful than ordinary graph neural networks.

1 Introduction

Using expert knowledge to increase the efficiency, interpretability or predictive performance of
a neural network is an evolving research direction in machine learning [30, 33]. Many ordinary
neural network architectures are not capable of using external and structural information such as
expert knowledge or meta-data, e.g., graph structures in a dynamic way. We would like to motivate
the importance of “expert knowledge” by considering the following example. Maybe one of the
best studied examples based on knowledge integration are convolutional neural networks [18].
Convolutional neural networks for images use at least two extra pieces of “expert knowledge” that is:
neighbored pixels correlate, and the structure of images is homogeneous. The consequence of this
knowledge is the use of receptive fields and weight sharing. It is a common fact that the usage of
this information about images has highly improved the predictive performance over fully connected
neural networks. But what if expert knowledge suggests that rectangular convolutional kernels are
not suitable to solve the task, or there exist two far away regions in the image that are important for
the classification? In this case the ordinary convolutional neural network architecture is too static
to adapt to the new information and thus dynamic neural networks are needed. The above example
illustrates the importance of the integration of expert knowledge into neural networks and should not
be understood as the task to solve in this work. In particular, dynamic neural networks are applicable
to a wide range of domains including video [36], text [15] and graphs [29]. The limitation of current
approaches is that expert knowledge is somehow implicit and not directly encoded in the network
structure, i.e., for each new information a new architecture has to be designed by hand. Our goal is
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Figure 1: Visualization of the learned parameters of the best RuleGNN model on DHFR (a) and
IMDB-BINARY (b) for three different random graphs from the test set. The label of the graph is
given on the left side of the figure. Positive weights are denoted by red arrows and negative weights
by blue arrows. The thickness and color corresponds to the absolute value of the weight. The size of
the nodes corresponds to the bias values. The second to fourth columns of (a) resp. (b) show all, the
10 and the 5 largest positive and negative weights.

to extract the essence of dynamic neural networks by defining a new type of neural network layer
that is on the one side able to use expert knowledge in a dynamic way and on the other side easily
configurable using a simple general scheme. Our solution to this problem are rule based layers that
are able to encode expert knowledge directly in the network structure. As far as we know, this is the
first work that defines a dynamic neural network layer in this generality.

Main Idea We simplify and unify the integration of expert knowledge and additional information
into neural networks by proposing a two-step approach and show how to encode given extra infor-
mation directly into the structure of a neural network in a dynamic way. In the first step the extra
information or expert knowledge is formalized using appropriate rules (e.g., certain pixels or regions
in images are important, only nodes in a graph of type A and B interact, some patterns, e.g., cycles or
cliques, in a graph are important, etc.). In the second step the rules are translated into rule functions
that are used to manipulate the structure of the neural network. More precisely, each rule gives rise
to a rule function that determines the positions of the weights in the weight matrix and the bias
terms. We note that the focus of this work is on the second step as we show how to use given rules to
dynamically adapt the layers. In fact, we do not provide a general instruction for deriving formal rules
from given expert knowledge. In contrast to ordinary network layers we consider a set Θ of learnable
parameters instead of fixed weight matrices. The weight matrices and bias terms are then constructed
for each input sample independently using the learnable parameters from Θ. More precisely, each
learnable parameter in Θ is associated with a specific relation between an input and output feature of
a layer which increases the interpretability of our model. Figure 1 shows the results of an application
of our approach to learning on graphs. In this case each input and output feature corresponds to a
specific node in the graph. The input samples are vectors (signals) corresponding to (a) molecule
graphs respectively (b) snippets of social networks and the task is to predict the class of the given
graph. Each colored arrow in the figure corresponds to a learned parameter from Θ, i.e., a specific
relation between two atoms in the molecules or two nodes in the social network. At the same time, it
visualizes the message passing between the nodes in the graph. Considering only the parameters with
the 3 largest positive and negative values, see the last column of (a) respectively (b), we see that our
approach has learned to propagate information from outer atoms to the rings respectively from the
nodes to the “important” nodes of the social network. This example shows several advantages of our
approach: (1) the architecture is very flexible compared to classical architectures and allows to deal
with different domains and arbitrary input dimensions, (2) messages can pass over arbitrary distances
in graphs in one layer, and (3) the learned parameters and hence also the models are interpretable and
can be used to extract new knowledge from the data or to improve existing rules.
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Main Contributions We define a new type of neural network layer called rule based layer. This
new layer can be integrated into arbitrary architectures making them dynamic, i.e., the structure of
the network changes based on the input data and the predefined rules. We prove that rule based
layers generalize classical feed-forward layers such as fully connected and convolutional layers.
Additionally, we show that rule based layers can be applied to graph classification, by introducing
RuleGNNs, a new type of graph neural networks. In this way we are able to extend the concept
of dynamic neural networks to graph neural networks together with all the advantages of dynamic
neural networks. RuleGNNs are by definition permutation equivariant, i.e., invariant to the order of
the nodes in the graph and able to handle graphs of arbitrary sizes. Considering various real-world
graph datasets, we demonstrate that RuleGNNs are competitive with state-of-the-art graph neural
networks and other graph classification methods. Using synthetic graph datasets we show that
“expert knowledge” is easily integrable into our neural network architecture and also necessary for
classification1.

The rest of the paper is organized as follows: We introduce the concept of rule based layers in Section 2
and prove in Section 3 that rule based layers generalize fully connected and convolutional layers. In
Section 4 we present RuleGNNs and apply them in Section 5 to different benchmark datasets and
compare the results to state-of the art graph neural networks. Finally, in Section 6 we discuss related
work, and in Section 7 some limitations and future work.

2 Rule Based Learning

Introducing the concept of rule based learning we first present some basic definitions followed by the
formal definition of rule based layers.

Preliminaries For some n ∈ N we denote by [n] the set {1, . . . , n}. A neural network is denoted
by a function f(−,Θ) : Rn −→ Rm with the learnable parameters Θ. We extend this notation
introducing an additional parameter R, that is the set of formal rules R = {R1, . . . ,Rk}. The
exact definition of these rules is given in the next paragraph. Informally, a rule R ∈ R is a function
that determines the distribution of the weights in the weight matrix or the bias term of a layer. A
rule R is called dynamic if it is a function in the input samples x ∈ Rn otherwise it is called static.
An example of a static rule is the one used to define convolutional layers, see Proposition 2. An
example of a dynamic rule can be found in Section 4. A rule based neural network is a function
f(−,Θ,R) : R∗ −→ R∗ that depends on a set of learnable parameters denoted by Θ and some rule
set R derived from expert knowledge or additional information. The notation ∗ in the domain and
co-domain of f indicates that the input and output can be of arbitrary or variable dimension. As
usual f is a concatenation of sub-functions f1, . . . , f l called the layers of the neural network. More
precisely, the i-th layer is a function f i(−,Θi,Ri) : R∗ −→ R∗ where Θi is a subset of the learnable
parameters Θ and Ri is an element of the ruleset R. We call a layer f i static if Ri is a static rule
and dynamic if Ri is a dynamic rule. The input data is a triple (D,L, I), where D = {x1 . . . , xk}
with xi ∈ R∗ is the set of examples drawn from some unknown distribution. The labels are denoted
by L = (y1 . . . , yk) with yi ∈ R∗ and I is some additional information known about the input data
D, e.g., knowledge about the graph structure, node or edge labels or importance of certain regions
in an image. One main assumption of this paper is that I can be used to derive a set of static or
dynamic rules R. Again we would like to mention that we concentrate on the analysis of the effects
of applying different rules R and not on the very interesting but also wide field of deriving the best
rules R from I, see some discussion in Section 7. Nonetheless, we always motivate the choice of the
rules derived by I.

Rule Based Layers In this section we will give a formal definition of a rule based layer. Given
some dataset (D,L, I) defined as before and the rule set R derived from I, the task is to learn the
weights Θ of the rule based neural network f to predict the labels of unseen examples drawn from an
unknown distribution. Our contribution concentrates on single layers and is fully compatible with
other layers such as linear layers or convolutional layers Hence, in the following we restrict to the
i-th layer f i(−,Θi,Ri) : R∗ −→ R∗ of a network f . For simplicity, we assume i = 1 and omit the
indices, i.e., we write f := f i, Θ := Θi and R := Ri. The forward propagation step of the rule

1See https://github.com/fseiffarth/RuleGNNCode and https://github.com/fseiffarth/gnn-comparison for our
code and results.
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based layer f which will be a generalization of certain known layers as shown in Section 3 is as
follows. Fix some input sample x ∈ D with x ∈ Rn. Then f(−,Θ,R) : Rn −→ Rm for n,m ∈ N
is given by

f(x,Θ,R) = σ(WRW (x) · x+ bRb(x)) . (1)

Here σ denotes an arbitrary activation function and WRW (x) ∈ Rm×n rsp. bRb(x) ∈ Rm is some
weight matrix rsp. weight vector depending on the input vector x and the rule R. The set Θ :=
{w1, . . . , wN , b1, . . . , bM} consists of all possible learnable parameters of the layer. The parameters
{w1, . . . , wN} are possible entries of the weight matrix while {b1, . . . , bM} are possible entries of
the bias vector. The key point here is that the rule R determines the choices and the positions of
the weights from Θ in the weight matrix WRW (x) and the bias vector bRb(x) depending on the input
sample x. In particular, not all learnable parameters must be used in the weight matrix and the bias
vector for some input sample x. In contrast to ordinary neural network layers, the weight matrix
and the bias vector are not fixed but functions of the input sample x. Moreover, for two samples
x, y ∈ D of different dimensionality, e.g., x ∈ Rn and y ∈ Rk with n ̸= k the weight matrices
WRW (x) and WRW (y) also have different dimensions and the learnable parameters can be in totally
different positions in the weight matrix.

Given the set of learnable parameters Θ := {w1, . . . , wN , b1, . . . , bM}, for each input x ∈ Rn each
rule R induces two rule functions

RW (x) : [m]× [n] −→ {0} ∪ [N ] and Rb(x) : [m] −→ {0} ∪ [M ] (2)

where m ∈ N is the output dimension of the layer that can also depend on x. In the following we
abbreviate RW (x)(i, j) by RW (x, i, j) and Rb(x)(i) by Rb(x, i). For simplicity, we assume that
the matrix and vector indices start at 1 and not at 0. Using the associated rule functions (2) we can
construct the weight matrix resp. bias vector by defining the entry (i, j) ∈ Rm×n in the i-th row and
the j-th column of the weight matrix WR(x) ∈ Rm×n via

WRW (x)(i, j) :=

{
0 if RW (x, i, j) = 0

wRW (x,i,j) o.w.
(3)

and the entry at position k in the bias vector bRb(x) ∈ Rm by

bRb(x)(k) :=

{
0 if Rb(x, k) = 0

bRb(x,k) o.w.
. (4)

Hence, an entry of the weight matrix or the bias vector of a rule based layer as defined in (1) is
zero if the value of the rule function is zero, otherwise the entry is the learnable parameter from the
set Θ and the index is given by the rule function. More precisely, the rule controls the connection
between the i-th input and the j-th output feature in the weight matrix. A rule R is called static if the
corresponding rule functions RW and Rb are independent of the input x ∈ D, i.e., RW (x) = RW (y)
and Rb(x) = Rb(y) for all inputs x, y ∈ R ∈ D otherwise it is called dynamic. We call a rule
based layer as defined in (1) static if it is based on a static rule R and dynamic otherwise. We
will show in Section 3 that rule based layers generalize known concepts of neural network layers
for specific rules R. In fact, we show that fully connected layers and convolution layers are static
rule based layers. Examples of dynamic rule based layers are given later on in Section 4. The
back-propagation of such a layer can be done as usual enrolling the computation graph of the forward
step and applying iteratively the chain rule to all the computation steps. We will not go into the details
of this computation as it is similar to many other computations using backpropagation with shared
weights. For the experiments we use the automatic backpropagation tool of PyTorch [24] which fully
meets our requirements.

Assumptions and Examples Rule based learning relies on the following two main assumptions:
A1) There is a connection between the additional information or expert knowledge I and the used
rule R and A2) The distribution of weights given by the rule R in the weight matrix WR(x) improves
the predictive performance or increases the interpretability of the neural network. As stated before
we concentrate on the second assumption and consider different distribution of weights in the weight
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matrix given by different rules. In fact, we assume without further consideration that it is possible
to derive meaningful rules R from the additional information or expert knowledge I. For example
if the dataset consists of images we can derive the “informal” rule that neighbored pixels are more
important than pixels far away and in case of chemical data there exists, e.g., the ortho-para rule for
benzene rings that makes assumptions about the influence of atoms for specific positions regarding
the ring. This rule was already learned by a neural network in [45]. It is another very interesting task
which is beyond the scope of this work how to formalize these “informal” rules or to learn the “best”
formal rules from the additional information I.

In the following sections we focus on the concept of rule based layers and therefore for simplicity we
only consider the rule function of weight matrices. The rule function associated with the bias term
can be constructed similarly. For simplicity, we write R instead of RW .

3 Theoretical Aspects of Rule Based Layers

In this section we provide a theoretical analysis of rule based layers and show that they generalize
fully connected and convolutional layers. More precisely, we define two static rules RFC and RCNN

and show that the rule based layer as defined in (1) based on RFC is a fully connected layer and the
rule based layer based on RCNN is a convolutional layer.

Proposition 1. Let f(−,Θ,RFC) : Rn −→ Rm with

f(y,Θ,RFC) = σ(WRFC(x) · y)

be a rule based layer of a neural network as defined in (1) (without bias term) with learnable
parameters Θ = {w1, . . . , wn·m} and y = f i(x) is the result of the first i− 1 layers. Then for the
rule function RFC(x) : [m]× [n] → [m · n] defined for all inputs x as follows

RFC := RFC(x)(i, j) := (i− 1) · n+ j,

the rule based layer f is equivalent to a fully connected layer with activation function σ.

Proof. To show the equivalence between the two layers it suffices to show that their weight matrices
coincide. In case of fully connected layers we have to show that the weight matrix WRFC(x) ∈ Rm×n

is filled with n ·m distinct weights. This can be easily checked by computing WRFC(x) using the
definition of the weight distribution based on the rule function in (3).

Proposition 1 shows that rule based layers generalize fully connected layers of arbitrary size without
bias vector and can be easily adapted to include the bias vector. Hence, this shows that rule based
layers generalize arbitrary fully connected layers. Moreover, fully connected layers are static rule
based layers as the rule RFC is static because it does not depend on the particular input x.

Proposition 2. Let f(−,Θ,RCNN) : Rn·m −→ R(n−N+1)·(m−N+1) with

f(y,Θ,RCNN) = σ(WRCNN(x) · y)

be a rule based layer of a neural network as defined in (1) (without bias term) with learnable
parameters Θ = {w1, . . . , wN2} and y = f i(x) is the result of the first i − 1 layers. Then for the
rule function RCNN : [(n−N + 1) · (m−N + 1)]× [n ·m] → [N2] defined by

RCNN := RCNN(x)(i, j) :=


τ(i, j) if 0 < γ(i, j) < N · n and

0 < j (mod n)− j + γ(i, j) < N

0 o.w.

with τ(i, j) = γ(i, j)− ((γ(i, j)− 1)//n) · (n−N)
and γ(i, j) = j − ((i− 1)//(n−N + 1)) · n+ (i− 1) (mod (n−N + 1))

the rule based layer f is equivalent to a convolution layer with quadratic kernel of size N (N ≤ n,
N ≤ m) and a stride of one over a two-dimensional image of size n×m (without padding and bias
vector) with activation function σ. The notation a//b denotes the integer division.

5



Proof. Instead of the original two-dimensional image of size n×m we consider a reshaped vector
x ∈ Rn·m as our definition of rule based layers uses vector matrix multiplication. The output vector
of dimension (n−N +1) · (m−N +1) can then again be reshaped into a two-dimensional image of
size (n−N + 1)× (m−N + 1). Unfortunately, the reshaping makes the rule function complicated
as the indices of the reshaped vector have to be mapped to the indices of the two-dimensional image.

First note that convolution with a N × N kernel corresponds to matrix-vector multiplication of a
doubly block circulant matrix that is a special case of a block Toeplitz matrix. Hence, what remains to
show the equivalence between the layers is to compare the weight matrices and show that the entries
in WRCNN(x) ∈ R(n−N+1)·(m−N+1)×n·m exactly match the entries in the doubly block circulant
matrix that corresponds to the convolution kernel. Indeed, using the definition of the doubly block
circulant matrix that corresponds to the convolution kernel and compare it to the above given rule
shows that the rule exactly returns the correct entries. Hence, the multiplication of x with WRCNN(x)

is equivalent to multiplication of x with the doubly block circulant matrix that is equivalent to the
convolution of x with a kernel of size N ×N .

Proposition 2 shows that rule based layers generalize 2D-image convolution without padding and bias
term. By adaption of the rule function it is possible to include the bias vector and padding. Moreover,
the result can be generalized to higher dimensions kernels, non-quadratic kernels and arbitrary input
and output channels. In fact, rule based layers can represent arbitrary shaped receptive fields changing
the rule function accordingly. Hence, rule based layers generalize arbitrary convolutional layers.
Convolutional layers are static rule based layers as the rule RCNN is static because it is independent
of the input. The following result is a direct implication from Propositions 1 and 2.

Theorem 1. Rule based layers generalize fully connected and convolutional feed-forward layers. In
particular, both layers are static rule based layers.

We claim that also other types of feed-forward layers can be generalized by rule based layers using
appropriate rule functions.

4 Rule Based Learning on Graphs

One of the main advantages of rule based layers as introduced in this work is that they give rise to a
dynamic neural network architecture that is freely configurable using almost arbitrary rule functions.
In fact, the rule based neural networks can handle input samples independent of the dimension and
structure. Hence, a natural application of our approach is the task of graph classification. We would
like to emphasize that graph classification is only one of many possible applications of rule based
layers. Other possible applications are node classification, regression tasks, graph embeddings or
applications on completely different domains like text or images.

Graph Preliminaries A graph is a pair G = (V,E) with V denoting the set of nodes of G and
E ⊆ {{i, j} | i, j ∈ V } the set of edges. All graphs are undirected and do not contain self-loops
or parallel edges. In case that it is clear from the context we omit G and only use V and E. The
distance between two nodes i, j ∈ V in a graph, i.e., the length of the shortest path between i
and j, is denoted by d(i, j). A labeled graph is a graph G = (V,E, l) equipped with a function
l : V → L that assigns to each node a label from the set L ⊆ N. Two labeled graphs G = (V,E, l)
and G′ = (V ′, E′, l′) are isomorphic if there exists a bijection π : V → V ′ such that {i, j} ∈ E
if and only if {π(i), π(j)} ∈ E′ and l(i) = l′(π(i)) for all i ∈ V . In this work the input samples
corresponding to a graph G = (V,E) are always vectors x ∈ R|V |. In particular, the input vectors
can be interpreted as signals over the graph and each dimension of the input vector corresponds to the
one-dimensional input signal of a graph node

4.1 Graph Rules

The example on molecule graphs in Figure 2 and Section 4.3 motivates the intuition behind different
graph specific rules that can be used to define a graph neural network based on rule layers. Note
that for m = n = |V | the rule functions as defined in (2) can be interpreted as a mapping from node
pairs (i, j) ∈ V × V (RW ) or nodes i ∈ V (Rb) to 0 or the index of the learnable parameter in Θ.
Two different node pairs (i, j) and (k, l) should map to the same integer if and only they “behave
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similar” in the graph. Our starting point for a general scheme to define rule functions for graphs
is a labeling function l : V → L. In case of molecule graphs take for example the atom labels as
node labels, see Section 4.3 as an example. For unlabeled graphs it is possible to use the degree of
a node. Moreover, we use a property function p : V × V → 0 ∪ N that defines a relation between
two nodes i, j ∈ V in a graph. Examples are the distance between two nodes, the type of edge
connecting the nodes or the information that i and j are in one circle or not. In this way we assign
a triple t(i, j) = (l(i), l(j), p(i, j)) to each pair of nodes (i, j). Wit this preliminary work we can
define RW and Rb from (2) as follows. We recall that the output of RW maps each pair of nodes to
some integer (index of the weight) or zero (no connection). If a certain property is not fulfilled, e.g.,
if the distance between two nodes is too large or the type of the edge is invalid there should be no
connection between the nodes. Thus, for D ⊆ 0 ∪ N being the set of all valid values for p values
we require RW (i, j) = 0 if p(i, j) /∈ D. Moreover, we require RW (i, j) = RW (k, l) if and only if
t(i, j) = t(k, l) and p(i, j) = p(k, l) ∈ D. For the bias term we require that Rb maps each node to
zero or some integer and two nodes i and j to the same integer if and only if l(i) = l(j). Besides
these requirements the exact value of the integer is not important as it is only the index of the weight
in the set of learnable parameters. Of course in practice it is of advantage to use consecutive integers
starting at 1 for the indices.

Proposition 3. Let f(−,Θ,R) be a graph rule based layer and x ∈ R|V | the input signal corre-
sponding to a graph G = (V,E) Then for every permutation π of the node order of G (permutation
of the entries of x) it holds f(π(x),Θ,R) = π(f(x,Θ,R)), i.e., f is permutation equivariant.

Proof. Using the definition of rule based layers (1) we have that

π(f(x,Θ,R)) = π(σ(WRW (x) · x+ bRb(x))) .

The entries of the weight matrix and the bias term are given by the rule functions RW and Rb,
see (2), which depend on the input signal x, i.e., the node order of the graph. Thus, by definition
the permutation of the input signal π(x) permutes the entries of the corresponding weight matrix
and the bias term in the same way compared to the original input signal x. Therefore, the result of
the multiplication of the permuted weight matrix with the permuted input signal is the same as the
permutation of the result of the multiplication of the original weight matrix with the original input
signal and it follows

π(σ(WRW (x) · x+ bRb(x))) = σ(WRW (π(x)) · π(x) + bRb(π(x))) = f(π(x),Θ,R)

which completes the proof.

In particular, Proposition 3 shows that each l and p as defined above gives rise to a permutation equiv-
ariant rule based layer. Thus, finding a meaningful rule for graphs reduces to finding a meaningful
labeling function l and property function p. In the following we focus on three different rule based
layers that are based on well-known graph labeling functions.

Weisfeiler-Leman Layer Recent research has shown that Weisfeiler-Leman labeling is a powerful
tool for graph classification [28, 21, 3, 31]. Thus, we propose to use 1-Weisfeiler-Leman labels of
iteration k as one option for l. The 1-Weisfeiler-Leman algorithm assigns in the k-th iteration to
each node of a graph a label based on the structure of its local k-hop neighborhood, see [28] for the
details2. For p we use the distance between two nodes, i.e., p ≡ d and D ⊂ 0 ∪ N is the set of valid
distances. We denote the induced rule by RWLk,D . For computational reasons in the experiments we
restrict the maximum number of different Weisfeiler-Leman labels considered by some bound L. We
relabel the most frequent L−1 labels to 1, · · · , L−1 and set all other labels to L. The corresponding
layer is denoted by fWLk,D,L

.

Pattern Counting Layer Beyond labeling nodes via the Weisfeiler-Leman algorithm, it is a
common approach to use subgraph isomorphism counting to distinguish graphs [4]. This is in fact
necessary as the 1-Weisfeiler-Leman algorithm is not able to distinguish some types of graphs, for
example circular skip link graphs [5] and strongly regular graphs [3, 4]. Thus, we propose a node
labeling function l based on pattern counting. The function p is the same as for the Weisfeiler-Leman

2Usually, Weisfeiler-Leman labels are represented via strings. For our purpose the strings are hashed to
integers.
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layer. In general, subgraph isomorphis counting is a hard problem [7], but for the real-world and
synthetic benchmark graph datasets that are usually considered, subgraphs of size k ∈ {3, 4, 5, 6}
can be enumerated in a preprocessing step in a reasonable time, see Table 5. Given a set of patterns,
say P , we compute all possible embeddings of these patterns in the graph dataset in a preprocessing
step. Then for each pattern P ∈ P and each node i ∈ V we count how often the node i is part of
an embedding of P . Using those counts we define a labeling function l : V → L ⊆ N and two
nodes i, j ∈ V are mapped to the same label if and only if their counts are equal for all patterns in
P . Patterns that are often used in practice are small cycles, cliques, stars or paths. We denote the
corresponding rule by RPD . As for the Weisfeiler-Leman Rule we restrict the maximum number of
different labels to some number L. The corresponding layer is denoted by fPD,L

.

The total number of learnable parameters for a layer of type Weisfeiler-Leman or Pattern counting is
bounded by L · L · |D| for the weight matrix and |L| for the bias term.

Aggregation Layer In contrast to the above layers we assume that m = M and n = |V |. Let
l : V → L be an arbitrary labeling function, e.g., the atom labels in molecule graphs, the degree
of the nodes or the Weisfeiler-Leman labels. We require the rule function RM

Aggr associated with
the weight matrix to assign each pair (n, i) with i ∈ V and n ∈ [M ] an integer or zero based on n
and l(i). In fact, for each element of L the rule defines M different learnable parameters. The rule
function RM

Aggr associated with the bias is the identity, i.e., it represents an ordinary bias term with
M learnable parameters. The corresponding layer is denoted by fRM

Aggr
. We use this layer as output

layer because its output is a fixed dimensional vector of size M ∈ N independent of the input size.

The total number of learnable parameters for the aggregation layer is bounded by M · |L| for the
weight matrix and M for the bias term.
Proposition 4. The aggregation layer fRM

Aggr
is permutation invariant, i.e., for any permutation

π of the nodes of G = (V,E) with corresponding input signal x it holds fRM
Aggr

(π(x),Θ,R) =

fRM
Aggr

(x,Θ,R).

Proof. Using the definitions of the aggregation rule, (3) and (4) it follows that node permutations
permute the rows of the weight matrix and thus have no effect on the bias vector. In fact, permutations
of the rows of the weight matrix do not change the result of the multiplication of the weight matrix
with the input signal. Thus, the result of the aggregation layer is invariant under permutations of the
nodes of the graph.

4.2 Rule Graph Neural Networks (RuleGNNs)

The layers defined above are the building blocks of RuleGNNs. Each RuleGNN is a concatenation of
different rule based layers from type Weisfeiler-Leman and Pattern Counting with different parameters
followed by an Aggregation Layer. The input of the network is a signal x ∈ R|V | corresponding to a
graph G = (V,E). We note that for simplicity we focus on one-dimensional signals but our approach
also allows multi-dimensional signals, i.e., x ∈ R|V |×d. The output of the network is a vector of
fixed size M ∈ N determined by the aggregation rule where M is usually the number of classes of
the graph classification task. The output can be also used as an intermediate vectorial representation
of the graph or for regression tasks. Note that RuleGNNs can be also used for node classification
tasks by setting M = |V | or by omitting the aggregation layer.
Theorem 2 (Expressive Power of RuleGNNs). For each pair of non-isomorphic graphs G and G′

there exists a RuleGNN f(−,Θ,R) that can distinguish G and G′.

Proof. The expressive power of the RuleGNNs is based on the expressive power of the underlying
labeling function l. Indeed, we will show that a RuleGNN is at least as powerful as the labeling
function l. Let l be a labeling function that can distinguish G and G′ by counting the occurrences of
the labels, e.g., the (k + 1)-WL labels where k is the maximum of the treewidths of G and G′ [8].
Now, consider the RuleGNN that consists only of the aggregation layer fRM

Aggr
with M = 1 based on

the labeling function l. Without loss of generality we assume that each entry of the input signals x
resp. y corresponding to G resp. G′ is equal to 1. Then fRM

Aggr
(x) resp. fRM

Aggr
(y) is equal to the sum

of the learnable parameters corresponding to the labels of the nodes of G resp. G′. By assumption l
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Figure 2: Information propagation in a simple two layer RuleGNN based on the molecule graphs
of ethylene (left) and cyclopropenylidene (right) and the rules RMol (5) and Rk

Aggr (6). The input
signal is propagated from left to right. The graph nodes represent the neurons of the neural network.
Edges of the same color denote shared weights in a layer.
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Figure 3: Molecule graphs of ethylene (left) and cyclopropenylidene (right). The indices denote the
order of the nodes.

can distinguish G and G′ by counting the occurrences of the labels and hence also the above defined
RuleGNN can distinguish G and G′.

4.3 Example: RuleGNNs for Molecule Graphs

Assume the task is to learn a property of a molecule based on its graph structure. In this example we
present a RuleGNN that is a concatenation of two very simple rule based layers. The advantage of
rule based layers and hence also RuleGNNs is that they encode the graph structure (in this example
the structure of two molecules) directly into the neural network. Moreover, the input data can be
arbitrary molecule graphs and the output is a vector of fixed size k = 2 that encodes the property of
the molecule or some intermediate vectorial representation. In this example we consider the molecule
graphs of ethylene and cyclopropenylidene given in Figure 3 together with their corresponding input
signals x ∈ R6 and y ∈ R5. The atoms of the molecules (hydrogen H and carbon C) correspond
to the nodes of a graph and the bonds to the edges. The atom labels and the bond types (single and
double) can be seen as additional information I that is known about the input samples. The graph
nodes are indexed via integers in some arbitrary but fixed order and the atoms corresponding to the
graph nodes are given by the labeling function l : V → {H,C}.

The RuleGNN consists of two rule based layers f1(−,Θ1,RMol) and f2(−,Θ2,R
2
Aggr) with learn-

able parameters Θ1 = {w1, . . . , w6} and Θ2 = {w′
1, . . . , w

′
4} and the following rule functions RMol

and R2
Aggr. For some graph G = (V,E) and its corresponding input signal z we define RMol as

follows:

RMol(z) : [|V |]× [|V |] −→ {0} ∪ [6]

(i, j) 7→



1 if i = j and l(i) = H

2 if i = j and l(i) = C

3 if (i, j) is an edge (-), l(i) = H, l(j) = C

4 if (i, j) is an edge (-),l(i) = C, l(j) = H

5 if (i, j) is an edge (-),l(i) = l(j) = C

6 if (i, j) is an edge (=),l(i) = l(j) = C

0 o.w.

(5)
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For some graph G = (V,E) and its corresponding input signal z we define RAggr as follows:

R2
Aggr(z) : [2]× [|V |] −→ {0} ∪ [4]

(i, j) 7→


i l(j) = H

i+ 2 l(j) = C

0 o.w.

(6)

Note that RMol and R2
Aggr are not restricted to the two molecules from above but can be applied

to arbitrary molecule graphs. Indeed, applying it to molecules with atom labels different from H
or C makes the rules less powerful, i.e., it should be adapted to the type of molecules. Using the
definition (3) of weight distribution defined by the rule function we can construct the weight matrices
WRMol(x),WR2

Aggr(x)
for the ethylene graph and WRMol(y),WRAggr(y) for the cyclopropenylidene

graph as follows:

WRMol(x) =


w1 0 0 0 w3 0
0 w1 0 0 w3 0
0 0 w1 0 0 w3
0 0 0 w1 0 w3
w4 w4 0 0 w2 w5
0 0 w4 w4 w5 w2

 WR2
Aggr(x)

=
(

w′
1 w′

1 w′
1 w′

1 w′
3 w′

3

w′
2 w′

2 w′
2 w′

2 w′
4 w′

4

)

WRMol(y) =

w1 0 w3 0 0
0 w1 0 w3 0
w4 0 w2 w6 w5
0 w3 w6 w2 w5
0 0 w5 w5 w2

 WR2
Aggr(y)

=
(

w′
1 w′

1 w′
3 w′

3 w′
3

w′
2 w′

2 w′
4 w′

4 w′
4

)

Combining the two rule based layers we obtain the RuleGNN and the forward propagation is given
by σ(WRAggr(x) · σ(WRMol(x) · x)) for the ethylene graph and σ(WRAggr(y) · σ(WRMol(y) · y)) for
the cyclopropenylidene graph.

Note that the forward propagation of the layer corresponding to the rule RMol is kind of a multiplica-
tion with a weighted adjacency matrix of the graph where the weights of the adjacency matrix are
given by the learnable parameters, see also Figure 2. In contrast to adjacency matrices the weight
matrix is not necessary symmetric. The computation graph induced by the weight matrices exactly
represent the graph structure while the edge weights are shared across the network using the rule,
see Figure 2. Note that also edge labels (e.g., atomic bonds) can be taken into account by increasing
the size of the weight set. Moreover, it is possible to include bigger neighborhoods, i.e., all nodes
reachable by k-hops. Of course using other information of the graph (e.g., substructures (such as
circles or cliques), node degrees, connections not depicted by edges) more complicated rules such as
the Weisfeiler-Leman rule and Pattern Counting rules can be used.

5 Experiments

We evaluate the performance of RuleGNNs on different real-world and synthetic benchmark graph
dataset and compare the results to state-of-the-art algorithms . For comparability and reproducibility
of the results, we make use of the experimental setup from [10]3. For each graph dataset we perform
a 10-fold cross validation, i.e., we use fixed splits4 of the dataset into 10 equally sized parts, and use
9 of them for training, parameter tuning and validation. We then use the model that performs best
on the validation set and report the performance on the previously unseen test set. We average three
runs of the best model to decrease random effects. The standard deviation reported in the tables is
computed over the results on the 10 folds.

Data and Competitors Selection A problem of several heavily used graph benchmark datasets
like MUTAG or PTC [20] is that node and edge labels seems to be more important than the graph
structure itself, i.e., there is no significant improvement over simple baselines [27]. Moreover, in
case of MUTAG the performance of the model is highly dependent on the data split because of the
small number of samples. Thus, in this work for benchmarking we choose DHFR, Mutagenicity,

3See https://github.com/fseiffarth/gnn-comparison for the results of the state-of-the-art algorithms.
4See https://github.com/fseiffarth/RuleGNNCode for the data splits.
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Dataset #Graphs #Nodes #Edges Diameter #Node Labels #Classes
max avg min max avg min max avg min

NCI1 4 110 111 29.9 3 119 32.3 2 45 11.5 0 37 2
NCI109 4 127 111 29.7 4 119 32.1 3 61 11.3 0 38 2
Mutagenicity 4 337 417 30.3 4 112 30.8 3 41 6.3 0 14 2
DHFR 756 71 42.4 20 73 44.5 21 22 14.6 8 9 2
IMDB-BINARY 1 000 136 19.8 12 1249 96.5 26 2 1.9 1 1 2
IMDB-MULTI 1 500 89 13.0 7 1467 65.9 12 2 1.5 1 1 3

Table 1: Details of the real-world datasets [20] used in the experiments.

NCI1, NCI109, IMDB-BINARY and IMDB-MULTI from [20] because the structure of the graphs
seems to play an important role, i.e., simple baselines [10, 27] are significantly worse than more
evolved algorithms. Additionally, we consider circular skip link graphs CSL [5] and some new
synthetic benchmark graph datasets called LongRings, EvenOddRings and Snowflakes [22] to
show that RuleGNNs can overcome limitations of ordinary graph neural networks. For more
details on the datasets see Section 5.1. For NCI1, IMDB-BINARY and IMDB-MULTI we use the
same splits as in [10] and for CSL we use the splits as in [9] and a 5-fold cross validation. We
evaluate the performance of the RuleGNNs on these datasets and compare the results to the baselines
from [10] and [27] and the Weisfeiler-Leman subtree kernel (WL-Kernel) [28] which is one of the
best performing graph classification algorithm besides graph neural networks. For comparison with
state-of-the-art graph classification algorithms we follow [10] and compare to DGCNN [44], GIN
[39] and GraphSAGE [12]. Additionally, we compare to the results of some recent state-of-the-art
graph classification algorithms [2, 3, 4, 31]. For the latter we use the results from the respective
papers that might be obtained with different splits of the datasets and another evaluation setup.

Experimental Settings and Resources All experiments were conducted on a AMD Ryzen 9
7950X 16-Core Processor with 128 GB of RAM. For the competitors we use the implementations
from [10]5. For the real-world datasets we tested different rules and combinations of the layers
defined in Section 4.1. More details on the tested hyperparameters can be found in Table 6. We
always use tanh for activation and the Adam optimizer [16] with a learning rate of 0.05 (real-world
datasets) resp. 0.1 (synthetic datasets). For the real-world datasets the learning rate was decreased by
a factor of 0.5 after each 10 epochs. For the loss function we use the cross entropy loss. All models
are trained for 50 (real-world) resp. 200 (synthetic) epochs and the batch size was set to 128. We
stopped the training if the validation accuracy did not improve for 25 epochs.

5.1 Dataset Details

In this section we provide additional details on the datasets used in the experiments. Tables 1 and 2
provide an overview of the real-world and synthetic datasets. We consider four synthetic datasets.
The CSL dataset is from [5]. We constructed the others to test the ability for detecting long range
dependencies and the expressive power beyond the 1-WL test.

LongRings The dataset consists of 1200 cycles of 100 nodes each and is designed to test the ability
to detect long range dependencies. Four of the cycle nodes are labeled by 1, 2, 3, 4 and all others by
0. The distance between each pair of the four nodes is exactly 25 or 50. The label of the graph is 0 if
1 and 2 have distance 50, 1 if 1 and 3 have distance 50 and 2 if 1 and 4 have distance 50. There are
400 graphs per class. The difficulty of the classification task is that information has to be propagated
over a long distance. Regarding RuleGNNs this is very easy as we can define an appropriate rule.

EvenOddRings The dataset consists of 1200 cycles of 16 nodes each and is designed to test the
ability to encode expert knowledge in the neural network architecture. The nodes in each graph
are labeled from 0 to 15. The graph label is determined by labels of the nodes that have distance 8
respectively 4 to the node with label 0. We denote them by x resp. y, z. We have four cases: x is
even and y + z is even, x is even and y + z is odd, x is odd and y + z is even, x is odd and y + z is
odd. There are 300 graphs per class, i.e., each of the four cases. The expert knowledge we use is that
the information has to be collected from nodes of distance 8 and 4 only.

5See https://github.com/fseiffarth/gnn-comparison for the code.
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Graph Label: 2 Graph Label: 3 Graph Label: 0 Graph Label: 3

1Figure 4: Example graphs from the Snowflakes dataset. The brown node in the circle is labeled by 1
and the other nodes by 0. The label of the graph is determined by the subgraph attached to the brown
node.

M0 M1 M2 M3

1Figure 5: The graphs M0,M1,M2 and M3 [22] that are not distinguishable by the 1-WL test.

EvenOddRingsCount The dataset consists of the same graphs as EvenOddRings but the graph
labels are different. For all nodes and their opposite node (distance 8) in the circle the sum of the
labels is computed. If there are more even sums than odd sums the graph is labeled by 0 and by 1
otherwise. There are 600 graphs per class. The expert knowledge we use is the information that only
distance 8 is relevant.

Snowflakes The dataset consists of graphs proposed by [22] that are not distinguishable by the
1-WL test, see Figure 4 for an example. The dataset consists of circles of length 3 to 12 and at
each circle node a graph from M0,M1,M2 or M3 is attached, see Figure 5 and [22] for the details.
M0,M1,M2 and M3 are non-isomorphic graphs that are not distinguishable by the 1-WL test. One
node in the circle is labeled by 1 and all other nodes are labeled by 0. The label of the graph is
determined by the graph M0,M1,M2 or M3 that is attached to the circle node with label 1.

5.2 Results

Real-World Datasets The results on the real-world datasets (Table 3) show that RuleGNNs are
able to outperform the state-of-the-art graph classification algorithms in the setting of [10] even if
we add all the additional label information that RuleGNNs use to the input features of the graph
neural networks (see the (features) results in Table 3). This shows that the structural encoding of
the additional label information is crucial for the performance of the graph neural networks and
not replaceable by using additional input features. Moreover, the results show that the Weisfeiler-
Leman subtree kernel [28] is the best performing graph classification algorithm on NC1, NCI109
and Mutagenicity. For IMDB-BINARY and IMDB-MULTI our approach performs worse than the
state-of-the-art graph classification algorithms that are not evaluated within the same experimental
setup. This might be the result of different splits of the datasets and the different evaluation setup or
the fact that we have not found the best rule for these datasets.

Synthetic Datasets The results on the synthetic benchmark graph dataset (Table 4) show that the
expressive power of RuleGNNs is higher than that of the standard message passing model. Moreover,
the integration of expert knowledge in the form of rules leads to a significant improvement in the
performance of the model. In fact, CLS and Snowflakes are not solvable by the message passing
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Dataset #Graphs #Nodes #Edges Diameter #Node Labels #Classes
max avg min max avg min max avg min

LongRings 1 200 100 100.0 100 100 100.0 100 50 50.0 50 5 3
EvenOddRings 1 200 16 16.0 16 16 16.0 16 8 8.0 8 16 4
EvenOddRingsCount 1 200 16 16.0 16 16 16.0 16 8 8.0 8 16 2
CSL [5] 150 41 41.0 41 82 82.0 82 10 6.0 4 1 10
Snowflakes 1 000 180 112.5 45 300 187.5 75 18 15.5 13 2 4

Table 2: Details of the synthetic datasets used in the experiments.

NCI1 NCI109 Mutagenicity DHFR IMDB-B IMDB-M

Baseline (NoG) [27] 69.2 ± 1.9 68.4 ± 2.2 74.8 ± 1.8 71.8 ± 5.3 71.9 ± 4.8 47.7 ± 4.0
WL-Kernel[28] 85.2 ± 2.3 85.0 ± 1.7 83.8 ± 2.4 83.5 ± 5.1 71.8 ± 4.5 51.9 ± 5.6
DGCNN[44] 76.4 ± 1.7 73.0 ± 2.4 77.0 ± 2.0 72.6 ± 3.1 69.2 ± 3.0 45.6 ± 3.4
DGCNN (features) 73.6 ± 1.0 72.5 ± 1.5 76.3 ± 1.2 76.1 ± 3.4 69.1 ± 3.5 45.8 ± 2.9
GraphSage[12] 76.0 ± 1.8 77.1 ± 1.8 79.8 ± 1.1 80.7 ± 4.5 68.8 ± 4.5 47.6 ± 3.5
GraphSage (features) 79.4 ± 2.2 78.6 ± 1.6 80.1 ± 1.3 82.4 ± 3.9 69.7 ± 3.1 46.6 ± 4.8
GIN[39] 80.0 ± 1.4 79.7 ± 2.0 81.9 ± 1.4 79.1 ± 4.4 71.2 ± 3.9 48.5 ± 3.3
GIN (features) 77.3 ± 1.8 77.7 ± 2.0 80.6 ± 1.3 81.8 ± 5.1 70.9 ± 3.8 48.3 ± 2.7

GSN (paper) [4] 83.5 ± 2.3 - - - 77.8 ± 3.3 54.3 ± 3.3
CIN (paper) [2] 83.6 ± 1.4 84.0 ± 1.6 - - 75.6 ± 3.7 52.7 ± 3.1
SIN (paper)[3] 82.7 ± 2.1 - - - 75.6 ± 3.2 52.4 ± 2.9
PIN (paper) [31] 85.1 ± 1.5 84.0 ± 1.5 - - 76.6 ± 2.9 -
RuleGNN 82.8 ± 2.0 83.2 ± 2.1 81.5 ± 1.3 84.3 ± 3.2 75.4 ± 3.3 52.0 ± 4.3

Table 3: Test set performance of several state-of-the-art graph classification algorithms averaged
over three different runs and 10 folds. The ± values report the standard deviation over the 10 folds.
The overall best results are colored red and the best ones obtained for the fair comparison from [10]
are in bold. The (features) variants of the algorithms use the same information as the RuleGNN as
input features additionally to node labels. The (paper) results are taken from the respective papers
using another experimental setup.

model because they are not distinguishable by the 1-WL test. The results on LongRings show that
long range dependencies can be easily captured by RuleGNNs and also dependencies between nodes
of different distances as in case of the EvenOddRings dataset can be easily encoded by appropriate
rules.

Preprocessing and Training Details Table 5 shows more details of training of RuleGNNs on the
different datasets. In particular, we see that except for the DHFR dataset we need less than 12 epochs
on average to reach the best result. This shows that our approach is very efficient and converges
quickly. At the first glance the average time per epoch seems to be very high which has two reasons.
One is also mentioned in [13] that there is a gap between the theoretical and practical runtime of
dynamic neural networks because the implementation in PyTorch is not optimized for dynamic neural
networks. The other reason is that our computations run in parallel, i.e., we are able to run all the
three runs and 10 folds in parallel on the same machine which produces some overhead but is more
efficient than running the experiments sequentially. As stated above the preprocessing times (Table 5)
are not relevant for the experiments as they are only needed once. The third column shows the time
needed to compute all the pairwise distances between the nodes of the graph. The fourth column
shows the time needed to compute the node labels used for the best model. The most preprocessing
time is needed for IMDB-BINARY and IMDB-MULTI because the graphs are much denser than the
other datasets. For the synthetic datasets except for CSL and Snowflakes we do not need any label
preprocessing time as the original node labels are used.

Architecture Details Table 6 provides an overview of the different architectures used in the
experiments that achieved the best results on the validation set. One advantage of our approach is that
messages can be passed over long distances. Hence, except for the EvenOddRings dataset we used
only one layer and the output layer. In case of NCI1, NCI109, Mutagenicity it turns out that the best
model uses the Weisfeiler-Leman rule with k = 2 iterations. We restricted the number of maximum
labels considered to 500 which results in 250000 learnable parameters for the weight matrix and 500
for the bias vector. For the output layer we used the bound of 50000 learnable parameters which was
larger than the number of different Weisfeiler-Leman labels in the second iteration. Interestingly,
for NCI1 and NCI109 the best validation accuracy was achieved if considering node pairs with
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LongRings EvenOddRings EvenOddRingsCount CSL Snowflakes

Baseline (NoG) [27] 30.17 ± 3.2 22.25 ± 3.0 47.9 ± 3.9 10.0 ± 0.0 27.3 ± 5.3
WL-Kernel [28] 100.0 ± 0.0 26.83 ± 4.2 47.8 ± 4.3 10.0 ± 0.0 27.9 ± 4.1
DGCNN [44] 29.9 ± 2.6 28.4 ± 2.5 59.1 ± 5.2 10.0 ± 0.0 26.0 ± 3.3
GraphSAGE [12] 29.8 ± 2.8 24.9 ± 2.7 51.3 ± 1.9 10.0 ± 0.0 25.0 ± 1.8
GIN [39] 32.0 ± 3.1 26.8 ± 2.5 51.0 ± 3.7 10.0 ± 0.0 24.5 ± 2.2
RuleGNN 99.0 ± 3.3 90.2 ± 7.2 100.0 ± 0.0 100.0 ± 0.0 97.9 ± 3.2

Table 4: Test set performance of several state-of-the-art graph classification algorithms averaged
over three different runs and 10 folds. The ± values report the standard deviation over the 10 folds.
The best results are highlighted in bold.

Dataset Best Epoch Avg. Epoch (s) Preproc. Distances (s) Preproc. Labels (s) #Graphs

NCI1 8.3 ± 5.3 377.1 ± 20.7 2.0 11.9 4 110
NCI109 6.4 ± 2.9 386.7 ± 1.9 2.4 13.2 4 127
Mutagenicity 10.1 ± 4.1 575.8 ± 66.4 2.2 15.2 4 337
DHFR 24.1 ± 14.6 44.4 ± 9.0 0.7 3.1 756
IMDB-BINARY 12.3 ± 4.6 24.3 ± 0.9 0.2 206.5 1 000
IMDB-MULTI 7.7 ± 3.5 19.6 ± 1.3 0.2 195.0 1 500

LongRings 195.2 ± 15.1 0.7 ± 0.2 6.6 - 1 200
EvenOddRings 177.1 ± 15.2 1.2 ± 0.3 0.2 - 1 200
EvenOddRingsCount 200.0 ± 0.0 0.5 ± 0.1 0.1 - 1 200
CSL 50.0 ± 0.0 1.6 ± 0.0 0.1 11.8 150
Snowflakes 192.7 ± 18.9 0.5 ± 0.1 7.1 116.8 1 000

Table 5: Runtimes and preprocessing times of the different datasets used in the experiments. All
values are averaged over the best runs. The first column shows the best epoch (highest validation
accuracy), the second the average time per epoch, the third the time needed to compute all the
pairwise distances between the nodes of the graph, the fourth the time needed to compute the node
labels used for the best model and the last the number of graphs in the dataset.

distances from 1 to 10, while in case of Mutagenicity the best model uses node pairs with distances
from 1 to 3. We also tested different small patterns, e.g., simple cycles, but they did not improve
the results. For DHFR the best model uses simple cycles with length at most 10 as patterns for the
output layer. We also tested the Weisfeiler-Leman rule in this case but the validation accuracy was
lower. For IMDB-BINARY and IMDB-MULTI the best model uses the patterns simple cycles with
length at most 10, the triangle and a single edge. Note that counting the embedding of a single edge
as pattern is equivalent to the degree of the node. We also tested the Weisfeiler-Leman rule but
the validation accuracy was lower6. As a next step it would be interesting to consider more rules,
rules that come from expert knowledge or also deeper architectures with more rule based layers
concatenated. Regarding the number of learnable parameters we would like to mention that the
number is relatively high but lots of parameters are not used in the weight matrix. Hence, it might be
possible to prune the set of learnable parameters by removing those that are not used or those that
have a small absolute value.

For the synthetic datasets we use “expert knowledge” to define the rules. Hence we did not tested
other rules than those in Table 6. For LongRings, EvenOddRings and EvenOddRingsCount we used
the original node labels for the rule based layers. In case of EvenOddRings we used two layers. The
first layer considers only node pairs with distance 8 and collects all the necessary information of
opposite nodes. The second layer that considers only node pairs with distance 4 and collects the
information of the nodes that are 4 hops away from the nodes with label 0, see also Figure 6. For
CSL we used as patterns all simple cycles with length at most 10. For the Snowflakes dataset we
used the patterns, cycle of length 4 and 5 and collect the information of all nodes that have pairwise
distance 3. In this way the RuleGNN is able to distinguish the graphs M0,M1,M2 and M3 that are
not distinguishable by the 1-WL test. For the output layer we used the Weisfeiler-Leman rule with
k = 2 iterations to collect the relevant information.

Interpretability of RuleGNNs Each learnable parameter of RuleGNNs used for the weight matrices
can be interpreted in terms of the importance of a connection between two nodes in a graph with
respect to their labels and their shared property (in our case the distance). That is, each model provides
the relevance of two nodes i, j in a graph with labels l(i), l(j) and distance d(i, j). In Figures 1
and 6 we see how the network has learned the importance of different connections between nodes for

6See https://github.com/fseiffarth/RuleGNNCode for a full list of tested hyperparameters.
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Dataset Rules Hyperparameters #Learnable Parameters
k D L per Layer

NCI1 wl 2 {1,. . . ,10} 500 2 500 500
wl 2 - 50000 4 220

NCI109 wl 2 {1,. . . ,10} 500 2 500 500
wl 2 - 50000 4 336

Mutagenicity wl 2 {1,. . . ,3} 500 750 500
wl 2 - 50000 4 972

DHFR wl 2 {1,. . . ,6} 500 1 382 880
pattern: (simple cycles≤ 10) - - - 112

IMDB-BINARY pattern: (triangle, edge) - {1,2} - 963 966
pattern: (induced cycles≤ 5) - - - 990

IMDB-MULTI pattern: (triangle, edge) - {1,2} - 551 775
pattern: (triangle, edge) 10 - - 1 578

LongRings labels - {25} - 30
labels - - - 18

EvenOddRings labels - {8} - 272
labels - {4} - 272
labels - - - 68

EvenOddRingsCount labels - {8} - 272
labels - - - 34

CSL pattern: (simple cycles≤ 10) - {1} - 8930
pattern: (simple cycles≤ 10) - - - 950

Snowflakes pattern: (cycle 4, cycle 5) - {3} - 90
wl 2 - - 20

Table 6: Best architectures per dataset. The column Rule shows the type of rule used in the
model, wl stands for the Weisfeiler-Leman labeling, pattern for the pattern based labeling and labels
for the original node labels. The last layer is always an aggregation layer. While the others are
Weisfeiler-Leman layers or Pattern Counting layers based on the labeling of the nodes. The column
Hyperparameters shows the hyperparameters used in the model, k is the number of iterations of the
Weisfeiler-Leman rule, D is the set of valid pairwise distances considered and L is the bound for the
number of different node labels considered. The column #Learnable Parameters shows the number
of learnable parameters in the model.

different distances and labels. The weights are visualized by arrows (thickness corresponds to the
absolute value and the color to the sign). The biases are visualized by the nodes (size corresponds
to the absolute value and the color to the sign). Figure 1 shows an example of the relevance of the
weights for graphs from the DHFR and IMDB-BINARY datasets using the best model. We can see
that in case of DHFR the RuleGNN has learned to pass messages from the outer nodes to ring nodes.
Some ring nodes seem to be more important than others. It is an interesting open question if these
connections can be interpreted in a chemical context. In case of the IMDB-BINARY dataset we can
see that the RuleGNN has learned to pass messages to some specific nodes. It would be interesting
to further investigate if these nodes have a specific meaning in the context of the dataset. Figure 6
shows an example of the learned parameters for our synthetic datasets. Considering the dataset
RingEvenOdd in Figure 6b we see that in the first layer the RuleGNN passes the messages between
opposite nodes as given by the rule. In the second layer it has learned the relevant information, i.e.,
to collect the information from the nodes that have distance 4 to the node with label 0 (dark blue
node). All other connections of distance 4 have a smaller weight, i.e., are less important. For the
Snowflakes dataset Figure 6c we see that the RuleGNN has learned to distinguish between the four
different subgraphs M0,M1,M2 and M3 glued to the central circle, showing that the power of the
RuleGNN goes beyond the 1-WL test.

6 Related Work

Dynamic neural networks have been proven to be more efficient [14], have more representation
power [40] and better interpretability [37] compared to static neural networks, see [13] for a survey
on this topic. Variants of dynamic neural networks are successfully applied to different tasks on image
data [37, 41, 46], natural language processing [38] and graph classification [29]. Using the categories
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Figure 6: Visualization of the learned parameters for the EvenOddRingsCount (a), EvenOddRings (b)
and Snowflakes (c) dataset. The first column shows the graphs and the colors of the nodes represent
the different node labels. The other columns show the learned weights and biases for the respective
rule based layer. The message passing weights are visualized by arrows (thicker for higher absolute
values) and the biases are visualized by the size of the node (red for positive and blue for negative
weights).

of dynamic neural networks proposed in [13] our approach can be seen as a dynamic routing network
which is a subcategory of sample dependent dynamic neural network which are networks that are
dependent on the input data. Examples of dynamic routing networks are given by [19, 25, 35]. In
particular, our dynamic architecture adaptation is similar to neural architecture search [47, 43] (NAS)
where the goal is to find the best architecture for a given task. We assume that the “best” architecture
is given by the “best” rules. Thus, in our setting neural architecture search translates into the search
for the best rules. The architecture of rule based neural networks depends on the input data and hence
our approach can be seen as a neural architecture search that tries to learn the best architecture per
input sample [6], guided by the predefined rules.

Regarding the specific application to graphs we would like to note that graph neural networks based
on the message passing paradigm [11] have been successfully applied to the task of graph classifi-
cation [12, 17, 32, 39]. Some limitations that are addressed by our approach have been considered
in the literature. For example k-hop approaches that aggregate information over long distances
have been considered [1, 23, 34]. To overcome the limitations of 1-WL test recent algorithms use
additional information like subgraph structures or topological information to improve the perfor-
mance [2, 3, 4, 31] In [45] the authors show that graph neural networks can learn chemical rules
like the ortho-para rule for molecules which goes in the direction of interpretability. To increase
the interpretability and explainability of graph neural networks there exist different approaches that
provide insights into the prediction of the model [42, 26]. Moreover, also dynamic approaches for
graphs are considered in the literature [29]. In contrast to these approaches and algorithms, we
provide a simple and general scheme to overcome different limitations of graph neural networks at
once. While additional information used in other algorithms is mostly hard-coded, we are able to
integrate expert knowledge by arbitrary rules. In fact, we are not aware of any other graph neural
network that is able to dynamically adjust the architecture based on the input graphs using predefined
rules.

7 Concluding Remarks

Finally, we would like to discuss some limitations of our approach together with possible solutions.
Moreover, we present some concluding remarks including an outlook on future research directions. In
this work, we have only considered 1-dimensional input signals and node labels, i.e., our experimental
results are restricted to graphs that do not have multidimensional node features. Additionally, we
have not considered edge features in our rules. In principle, multidimensional node features and edge
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labels can be handled by our approach with the cost of increasing complexity. For each graph we need
to precompute the pairwise distances and store the positions of the weights in the weight-matrix. This
is a disadvantage regarding large and dense graphs as we need to store a large number of positions.
For dense graphs the number of positions can be quadratic in the number of nodes. Thus, we need
to find a trade-off between the performance of our model and the sparsity of the weight matrices
for large and dense graphs. To define a meaningful rule for a layer the input and output features
need to be logically connected. Fortunately, this is the case for graphs but for other domains this
might be a limitation. If it is not possible to define a formal rule using expert knowledge or additional
information the number of possible rules that have to be tested can be very large. Thus, it is an
interesting question if it is possible to automatically learn a rule that fits the data or captures the expert
knowledge in the best way. As stated in [13] there is a “gap between theoretical & practical efficiency”
regarding dynamic neural networks, i.e., common libraries such as PyTorch or TensorFlow are not
optimized for these approaches.

Summarizing our contributions, we have introduced a new type of neural network layer that dynami-
cally arranges the learnable parameters in the weight matrices and bias vectors according to formal
rules. On the one hand our approach generalizes classical neural network components such as fully
connected layers and convolutional layers. On the other hand we are able to apply rule based layers
to the task of graph classification showing that expert knowledge can be integrated into the learning
process. Moreover, we have shown that for graph classification our approach gives rise to a more in-
terpretable neural network architecture as every learnable parameter is related to a specific connection
between input and output features. This leads to some interesting open questions that we would like
to address in future work. For example, it is an interesting question if it is possible to automatically
learn the best rule for a given task during training. The experiments on graphs have shown that the
number of relevant parameters, i.e., that are updated during training, is small compared to the total
number of parameters. Thus, for future work it would be interesting to investigate if it is possible to
prune the number of parameters, i.e., to set parameters to zero, to increase the interpretability of the
model, reduce the computational costs and the size of the model. The visualization of the learned
parameters suggest that the model has learned some abstract rules, e.g., regarding the DHFR dataset.
In fact, it is an open question if these rules have a theoretical background in chemistry. If chemical
rules are learned by our model, one could think of transferring the rules learned on one dataset
to another dataset which could increase the predictive performance especially for small datasets.
Another advantage of our rule based approach is that it is easily integrable into existing architectures.
Hence, it would be interesting to consider other tasks like node classification or even other domains
like images or text.
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