
Mining Tree Patterns with Partially Injective
Homomorphisms

Till Hendrik Schulz1, Tamás Horváth1,2,3, Pascal Welke1, and Stefan
Wrobel1,2,3

1Dept. of Computer Science, University of Bonn, Bonn, Germany
2Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

3Fraunhofer Center for Machine Learning, Sankt Augustin, Germany

Abstract. One of the main differences between inductive logic program-
ming (ILP) and graph mining lies in the pattern matching operator
applied: While it is mainly defined by relational homomorphism (i.e.,
subsumption) in ILP, subgraph isomorphism is the most common pat-
tern matching operator in graph mining. Using the fact that subgraph
isomorphisms are injective homomorphisms, we bridge the gap between
ILP and graph mining by considering a natural transition from homo-
morphisms to subgraph isomorphisms that is defined by partially injec-
tive homomorphisms, i.e., which require injectivity only for subsets of
the vertex pairs in the pattern. Utilizing positive complexity results on
deciding homomorphisms from bounded tree-width graphs, we present
an algorithm mining frequent trees from arbitrary graphs w.r.t. partially
injective homomorphisms. Our experimental results show that the pre-
dictive performance of the patterns obtained is comparable to that of
ordinary frequent subgraphs. Thus, by preserving much from the advan-
tageous properties of homomorphisms and subgraph isomorphisms, our
approach provides a trade-off between efficiency and predictive power.

1 Introduction

Despite the facts that graphs can be considered as relational structures and
graph patterns as function-free first-order goal clauses, inductive logic program-
ming (ILP) [10] and graph mining are typically regarded as independent research
fields. One of the reasons for this separation lies in the relative simplicity of the
vocabularies for graphs as relational structures. Another important difference
is that while the pattern matching operator in ILP is defined by subsumption
(cf. [10]), a weakening of first-order implication, it is mainly the subgraph iso-
morphism in graph mining. For first-order function-free clauses, subsumptions
are in fact homomorphisms between relational structures (see, e.g., [8]). Thus,
ILP (mainly) applies relational homomorphisms, while graph mining deploys
subgraph isomorphisms.

Our goal is to propose a binary feature space for predictive graph mining that
is spanned by frequent patterns. Due to the lack of injectivity, frequent patterns
w.r.t. homomorphism result, on the one hand, in a loss in predictive perfor-
mance compared to subgraph isomorphism when used for classification tasks. On



the other hand, however, homomorphism is decidable in polynomial time for a
broad class of patterns for which subgraph isomorphism remains persistently
NP-complete (e.g., while the existence of a homomorphism from a path into a
graph can be decided in polynomial time, this problem is NP-complete for sub-
graph isomorphism). As a trade-off between expressiveness and complexity, our
goal is to preserve from the rigidity of subgraph isomorphism as much as possi-
ble, while utilizing the efficiency of homomorphisms for tractable graph classes.
The difference between these two pattern matching operators is that any sub-
graph isomorphism is in fact an injective homomorphism. We therefore consider
a natural transition from homomorphisms to subgraph isomorphisms that is de-
fined by partially injective homomorphisms, i.e., which require injectivity only
for a subset of the vertex pairs.

For loop-free graphs, any partially injective homomorphism can polynomially
be reduced to an ordinary homomorphism by extending the graphs with addi-
tional edges corresponding to the injectivity constraints. To distinguish between
original and constraint edges, we use edge colors. It holds that distinct sets of
injectivity constraints define different partially injective homomorphisms prob-
lems between the same pattern and target graphs. In particular, the empty (resp.
maximum) set of injectivity constraints corresponds to ordinary homomorphism
(resp. subgraph isomorphism). By means of partially injective homomorphisms
we can thus relax the rigid conception of having the binary choice between ho-
momorphism and subgraph isomorphism, and are flexible to dynamically choose
the degree of injectivity in the pattern matching operator. To the best of our
knowledge, the application of dynamic pattern matching operators is an entirely
novel characteristic in pattern mining, distinguishing it from all other traditional
pattern matching operators used in ILP and graph mining.

Our approach can efficiently be applied to all pattern classes from which
homomorphisms can be decided efficiently. For this work we consider the class
of bounded tree-width graphs [12] (cf. [4] for the positive result on the complexity
of homomorphisms from bounded tree-width graphs). More precisely, we restrict
the patterns to trees and require the tree together with the additional constraint
edges to form a graph of tree-width at most k, where k > 0 is some (small)
constant. While this kind of partially injective homomorphisms from trees into
arbitrary graphs is decidable in polynomial time, ordinary subgraph isomorphism
from a tree remains NP-complete.

Using this idea, we propose an algorithm mining frequent trees w.r.t. par-
tially injective homomorphisms. The rationale behind the choice of tree patterns
is that the predictive performance achieved with frequent trees compares well to
that of frequent connected subgraphs [14]. As the set of injectivity constraints
depends on the particular pattern at hand, the output of the mining algorithm
contains not only the tree patterns, but also the injectivity constraints. A com-
plete enumeration of all frequent patterns is, however, practically infeasible for
the potentially huge number of injectivity constraint sets. We overcome this
problem by considering only patterns which are k-trees [13], i.e., edge maximal
graphs of tree-width at most k. Utilizing the algorithmic definition of k-trees (cf.



[13]), we arrive at a natural refinement operator for the corresponding pattern
mining problem, allowing for an efficient frequent pattern enumeration.

We have empirically evaluated the predictive performance and the runtime of
our approach on real-world and artificial datasets. The predictive performance
obtained by frequent subtrees w.r.t. partially injective homomorphism was very
close to that of ordinary frequent subtrees and hence, to that of ordinary frequent
subgraphs [14], and was achieved already for tree-width at most 3. Regarding the
runtime, our algorithm is slower on molecular graphs than GASTON [11] and
FSG [5] which seem to be specifically designed for this kind of graphs. However,
already on slightly more complex structures beyond chemical graphs, our method
always terminates and is faster by at least 1 (up to 3) orders of magnitude than
GASTON and FSG (when they terminate at all). Thus, our approach offers a
trade-off between runtime and predictive power via the choice of tree-width.

The rest of the paper is organized as follows. We collect the necessary notions
in Sect. 2, introduce the concept of partially injective homomorphisms in Sect. 3,
and present our mining algorithm in Sect. 4. We report our empirical results in
Sect. 5 and conclude in Sect. 6. For page limitations, proofs are omitted in this
short version.

2 Notions and Notation

In this section we collect the necessary notions from graph theory (see, e.g.,
[6]) and fix the notation. For a set S, let [S]2 = {X ⊆ S : |X| = 2}. The set
{u, v} ∈ [S]2 is denoted by uv. An undirected (resp. directed) labeled graph over
an alphabet Σ is a triple G = (V,E, `) consisting of a set V of vertices, a set
E ⊆ [V ]2 (resp. E ⊆ V × V ) of edges, and a labeling function ` : V ∪ E → Σ
assigning a label from Σ to each vertex and edge. We often denote the set of
vertices of G by V (G) and the set of edges by E(G). For simplicity we present
our result for undirected graphs, by noting that any undirected graph G can be
regarded as a directed graph such that all edges uv ∈ E(G) are replaced by the
directed edges (u, v) and (v, u). Accordingly, unless otherwise stated, by graphs
we always mean undirected graphs.

A homomorphism from a graph G = (V,E, `) into a graph G′ = (V ′, E′, `′)
is a function ϕ : V → V ′ preserving all edges and labels, i.e., (i) ϕ(u)ϕ(v) ∈ E′
for all uv ∈ E, (ii) `(v) = `′(ϕ(v)) for all v ∈ V , and (iii) `(uv) = `′(ϕ(u)ϕ(v))
for all uv ∈ E. If, in addition, ϕ is injective then it is a subgraph isomorphism
from G to G′. The graphs G and G′ above are isomorphic if there exists a bi-
jection ϕ between V (G) and V (G′) such that ϕ and its inverse ϕ−1 are both
homomorphisms. To enforce the morphisms above to satisfy certain injectivity
constraints, the edges of the graphs, in addition to their labels, will have some
color as well. In such cases homomorphisms (and hence, subgraph isomorphisms
and isomorphisms) are required to preserve the edge colors as well. The def-
initions of homomorphism, subgraph isomorphism, and isomorphism between
directed graphs are analogous with the additional constraint that ϕ must pre-
serve not only the edges, but also their directions. As the generalization of our



method from unlabeled graphs to labeled graphs is straightforward, for simplicity
we present our algorithms for the unlabeled case.

We will pay a special attention to graphs of bounded tree-width [12]. For
the definition and basic properties of bounded tree-width graphs, the reader
is referred e.g. to [6]. Given a pattern graph H and a target graph G, it is
NP-complete to decide whether there exists a homomorphism from H to G. If,
however, the tree-width of H is bounded by some constant, then this problem
can be decided in polynomial time for any graph G (see, e.g, [4]). For an integer
k > 0, a k-tree [13] is defined recursively as follows: (i) A clique (i.e., fully
connected graph) of k + 1 vertices is a k-tree. (ii) Given a k-tree G with n
vertices, a k-tree with n+ 1 vertices is obtained from G by adding a new vertex
v to G and connecting v to all vertices of a k-clique (i.e., a clique of size k) of
G. It is well-known that a k-tree has always tree-width k and that it is edge
maximal w.r.t. this property, i.e., adding any further edge to a k-tree results in a
graph of tree-width k+1 (cf. [13]). Furthermore, all k-trees have k|V (G)|−

(
k+1
2

)
edges. Finally, a partial k-tree is a subgraph of a k-tree and hence has tree-width
at most k.

Let � be a preorder (i.e., reflexive and transitive relation) on a set S. For
a, b ∈ S we say that a ≺ b iff a � b and a � b, and define the equivalence
relation ≡ on S by a ≡ b iff a � b and b � a. A function ρ : S → 2S is called a
refinement operator for (S,�) if for every a ∈ S we have ρ(a) ⊆ {b ∈ S|a � b}.
Furthermore, ρ is (i) locally finite if ρ(a) is finite for every a ∈ S, (ii) complete if
for every a, b ∈ S with a ≺ b there exist a ≡ c0, c1, . . . , cn ≡ b with ci ∈ ρ(ci−1)
for all i = 1, . . . , n, (iii) proper if for all a ∈ S, ρ(a) ⊆ {b ∈ S|a ≺ b}, and (iv)
ideal if ρ is locally finite, complete and proper. For basic properties of refinement
operators, the reader is referred e.g. to [10].

3 Partially Injective Homomorphisms

In this section we define partially injective homomorphisms, the central notion
for this work, and discuss some of its properties. On the one hand, while the ho-
momorphism and subgraph isomorphism problems are both NP-complete in gen-
eral, their complexity behaves differently on special subproblems. In particular,
homomorphism can be decided in polynomial time for a broad range of pattern
classes for which subgraph isomorphism remains NP-complete. As an example,
whereas the homomorphism problem from graphs of bounded tree-width can be
decided in polynomial time [4], subgraph isomorphism remains NP-complete not
only from trees (which have tree-width 1), but even from paths. On the other
hand, however, as we empirically demonstrate in Section 5, frequent patterns
generated w.r.t. subgraph isomorphism yield a much higher predictive perfor-
mance when used for classification purposes than those w.r.t. homomorphism.
As subgraph isomorphisms are injective homomorphisms, these empirical results
clearly highlight the importance of the injectivity of the pattern matching oper-
ator in practice. Motivated by our experiments, we propose a trade-off between
complexity and predictive performance by closing the gap between homomor-



phisms and subgraph isomorphisms. It follows from the remarks above that a
natural transition from homomorphisms to subgraph isomorphisms can be ob-
tained by partial injectivity, i.e., by requiring the injectivity constraint not for
all vertex pairs in the pattern, but only for a subset of them. Formally, a pattern
graph H can be embedded into a target graph G by a partially injective ho-
momorphism satisfying a set C ⊆ [V (H)]2 of injectivity constraints, denoted by
H −→
C
G, if there exists a homomorphism ϕ from H to G such that ϕ(u) 6= ϕ(v)

for all uv ∈ C. In case of ordinary homomorphisms, i.e., when C = ∅, the above
notation reduces to H → G. We refer to the corresponding decision problem,
denoted PIHom(H,G, C), as PIHom problem and call the pair (H, C) a PIHom
pattern.

Our key idea is to consider such PIHom problems that can polynomially be
reduced to efficiently decidable ordinary homomorphism problems. For the effi-
ciency, we consider graphs of bounded tree-width, utilizing positive complexity
results on deciding homomorphisms from this graph class [4]. Regarding the re-
duction, for H, G, and C above we transform H and G into two edge colored
graphs by the following steps:

1. Color all (original) edges of H and G in blue,
2. for all uv ∈ E(H) ∪ C, connect u and v by a red edge, and
3. for all u, v ∈ V (G) with u 6= v, connect u and v by a red edge.

Let the graphs obtained be denoted by H〈C〉 and G〈>〉. As homomorphisms
between colored graphs preserve also the edge colors, the proof of the claim
below is immediate from the definitions, by noting that all graphs considered in
this work are loop free:

Proposition 1. For H,G, C and H〈C〉, G〈>〉 above we have H −→
C
G if and only

if H〈C〉 → G〈>〉.

Notice that for loop-freeness it suffices to consider the injectivity constraints
only for unconnected vertex pairs in the original pattern graph H (i.e., we can
assume w.l.o.g. that C ∩ E(H) = ∅). Note also that for H and G above, each
subset C ⊆ [V ]2 \E(H) defines a distinct problem PIHom(H,G, C) and that the
set of all PIHom patterns over H form a (complete) lattice (LH ,�) with

LH = {(H, C) : C ⊆ [V (H)]2 \ E(H)}

and with partial order � defined as follows: For all C1, C2 ⊆ [V (H)]2 \ E(H),
(H, C1) � (H, C2) iff C1 ⊆ C2. The least element (H, ∅) (resp. greatest element
(H, [V ]2\E(H))) of LH corresponds to ordinary homomorphism (resp. subgraph
isomorphism) from H. For any target graph G, (LH ,�) is closed downwards in
the sense that H −→

C1
G and C2 ⊆ C1 implies H −→

C2
G.

Fig. 1 visualizes three partially injective homomorphisms from H into G. The
graphs H and G are identical in all three examples, while the sets of injectivity
constraints differ. We explicitly visualize the constraints in the depiction of pat-
terns. For instance, the partially injective homomorphism depicted in Fig. 1(b)



t1

b
a

b

bb

t2 t3

t5t4

a b

b b

v1 v2

v3
v4

H : G :

(a)

t1

b
a

b

bb

t2 t3

t5t4

a b

b b

v1 v2

v3 v4

H : G :

(b)

t1

b
a

b

bb

t2 t3

t5t4

a b

b b

v1 v2

v3 v4

H : G :

(c)

Fig. 1: Examples for different partially injective homomorphisms from H into G. Solid
lines represent blue edges whereas dashed ones represent red edges.

v1

v2 v3

v4

ba

ab

v1

v2 v3

v4

ba

ab v1

v2 v3

v4

ba

ab v1

v2 v3

v4

ba

ab

v1

v2 v3

v4

ba

ab v1

v2 v3

v4

ba

ab v1

v2 v3

v4

ba

ab

v1

v2 v3

v4

ba

ab

T
re
e
-w

id
th

1
T
re
e
-w

id
th

2
T
re
e
-w

id
th

3

Bd+2

Bd+1

Fig. 2: Visualization of maximal borders in the lattice of PIHom patterns for a path.

requires the homomorphism ϕ from H to G to satisfy the injectivity constraint
ϕ(v2) 6= ϕ(v3).

We will consider lattices of PIHom tree patterns, i.e., when the first compo-
nent in the PIHom pattern (H, C) is a tree. In particular, when H is a tree with
n vertices, the cardinality of the corresponding PIHom pattern lattice LH is

2O(n2), i.e., exponential in the size of H. Fig. 2 illustrates such a lattice (LH ,�)
for a path H of length 3. Each depicted graph corresponds to a PIHom tree
pattern with a specific set of injectivity constraints.

4 Pattern Mining

In this section we define the problem of mining frequent maximally constrained
PIHom tree patterns. We first claim that there exists no locally finite and
complete refinement operator for a natural representative set of this kind of
patterns if we want to avoid redundancy. We therefore relax the problem def-
inition and propose an efficient pattern mining algorithm tolerating redundan-
cies in the output. The restriction of patterns to trees is motivated by com-
plexity issues and by the remarkable predictive performance which is achieved
by using frequent subtrees w.r.t. subgraph isomorphism [14]. In general, given
a tree H and target graph G, PIHom(H,G, C) can be decided in polynomial



time if C = ∅ (i.e., for ordinary homomorphism), but is NP-complete whenever
C = [V (H)]2 \ E(H) (i.e., for subgraph isomorphism). We bridge this complex-
ity gap by considering a distinguished subset of LH for which the corresponding
PIHom problems are decidable in polynomial time for any target graph G. More
precisely, for a tree H and some constant k > 0 we consider the pattern set
Lk
H = {(H, C) ∈ LH : H〈C〉 has tree-width at most k}. Proposition 1 together

with the positive complexity result on deciding homomorphisms from graphs of
bounded tree-width [4] implies that for all (H, C) ∈ Lk

H and for all target graphs
G, PIHom(H,G, C) can be decided in polynomial time.

Our experiments (cf. Sect. 5) clearly demonstrate that, besides the struc-
tural gap between homomorphisms and subgraph isomorphisms discussed earlier,
there is a large gap between their predictive performances as well. Furthermore,
this gap vanishes as the number of injectivity constraints increases. Motivated
by this empirical observation and the negative result formulated in Section 4.1
below, we will pay a special attention to the maximal elements of Lk

H , i.e., to
such PIHom patterns (H, C) ∈ Lk

H for which H〈C〉 is a complete graph whenever
|V (H)| ≤ k + 1; o/w it is a k-tree. In other words, we will consider the positive
border of (Lk

H ,�) w.r.t. the following interestingness predicate: (H, C) ∈ LH is
interesting if H〈C〉 has tree-width at most k.

As an example, all patterns (H, C) with |C| = 2 in Fig. 2 are maximally
constrained w.r.t. tree-width 2, as they have tree-width 2 and adding any further
constraint would increase their tree-width. (A 4-clique has tree-width 3.) The
positive borders for k = 1 and k = 2 are denoted by Bd+1 and Bd+2 , respectively.
Clearly, Bd+1 = {(H, ∅)} since adding any further injectivity constraint would
result in a pattern of tree-width 2. In the example in Fig. 2 there are e.g. seven
constraint sets for the path H connecting v1 and v4. For all of these constraint
sets C, H〈C〉 has tree-width at most 2. Yet, we are most interested in the three
patterns with |C| = 2 (i.e., Bd+2 ), as they have the highest degree of partial
injectivity.

4.1 PIHom Core Patterns: A Negative Result

Using the concepts introduced above, in this section we consider the pattern
language Lk defined by the union of the Lk

Hs over all tree patterns H. Given a
database D of graphs, our goal is to generate a subset S of Lk on the basis of
D that will span the binary feature space in which the elements of D, as well
as further unseen graphs will be embedded. For this application purpose, it is
desirable to avoid “redundancies” among the patterns in S. There are various
ways of defining redundancy. Perhaps the most natural one is the following
definition: S contains no two model equivalent patterns, where the patterns
(H1, C1), (H2, C2) ∈ Lk are model equivalent, denoted (H1, C1) ≡m (H2, C2),
if the equivalence H1 −→

C1
G ⇐⇒ H2 −→

C2
G holds for all graphs G.

For complexity reasons, we regard a relaxed notion of redundancy and show
that even this weaker form raises severe algorithmic issues. More precisely, con-
sider the order �h on Lk defined as follows: For all (H1, C1), (H2, C2) ∈ Lk,



(H1, C1) �h (H2, C2) iff H1〈C1〉 → H2〈C2〉. One can easily see that �h is a pre-
order on Lk. Using this definition, a set S ⊆ Lk is regarded as non-redundant if it
contains no two homomorphism equivalent patterns, where (H1, C1), (H2, C2) ∈
Lk are homomorphism equivalent, denoted (H1, C1) ≡h (H2, C2), iff (H1, C1) �h

(H2, C2) and (H2, C2) �h (H1, C1). Clearly, ≡m and ≡h are both equivalence
relations and ≡h is finer than ≡m, i.e., the partition of Lk induced by ≡h is
a refinement of that induced by ≡m. Thus, model equivalent patterns are not
necessarily homomorphism equivalent, implying that ≡h may allow a certain
amount of redundancies w.r.t. ≡m.

Let Lk/≡h denote the set of equivalence classes induced by ≡h. For all c ∈
Lk/≡h, one can consider the core of c, a canonical representative element of c,
defined as follows: Select an arbitrary pattern (H, C) ∈ c and take the smallest
subgraph H ′〈C′〉 of H〈C〉 such that (H, C) ≡h (H ′, C′). It holds that H ′〈C′〉 (and
hence, (H ′, C′)) can be computed by a greedy algorithm removing the redundant
edges one by one. The properties of tree-width together with the results of [2,
4] imply that (H ′, C′) is a core of c, it always exists and is unique modulo
isomorphism independently of the choice of (H, C), and can be calculated in time
polynomial in the size of (H, C). The reason of using cores is that in such cases
when the pattern matching operator is defined by (relational) homomorphism
(e.g. in ILP [10]), the equivalence classes in Lk/≡h may contain infinitely many
patterns, due to the fact that �h is not anti-symmetric.

While subgraph isomorphism as the pattern matching operator allows for a
very natural refinement operator on the pattern language, this is typically not
the case for homomorphism, caused also by the difference in the anti-symmetry.
Indeed, in case of subgraph isomorphism, the pattern language along with the
partial order defined by subgraph isomorphism can directly be translated into
an ideal refinement operator (assuming that all patterns are connected); just
extend the pattern at hand in every possible way either by a single edge or by
a single vertex connected to one of the old vertices. In contrast, the preorder on
Lk defined by homomorphism does not impose such an algebraic structure that
could be turned into a (natural) algorithmic definition of a refinement operator
on Lk

c . In fact, Lk
c may contain cores having infinitely many “direct” refinements,

implying the following negative result:

Theorem 1. For all k ≥ 1, there exists no finite and complete refinement op-
erator for the preordered set (Lk

c ,�h).

The negative result formulated in Theorem 1 does not imply that PIHom
core patterns cannot be enumerated efficiently ; this question is an open prob-
lem.1 However, it indicates that traditional pattern generation paradigms based
on refinement operators are not applicable to (Lk

c ,�h). In the next section we
therefore relax our problem setting and tolerate further redundancies in the
output pattern set.

1 In the long version of the paper we show that if the pattern language can further be
restricted structurally then frequent cores w.r.t. a database cannot be generated in
output polynomial time (unless P = NP).



4.2 The Problem Definition

Theorem 1 implies that we have to consider a different pattern language in place
of Lk

c if we want to generate the output patterns by using some algorithmically
appropriate refinement operator. To achieve this goal, we consider PIHom tree
patterns that are maximally constrained w.r.t. tree-width k, i.e., the set Lk

max ⊆
Lk defined as follows: For all (H, C) ∈ Lk, (H, C) ∈ Lk

max iff |V (H)| ≤ k + 1
and H〈C〉 is a complete graph or |V (H)| > k + 1 and H〈C〉 is a k-tree. The
partially injective homomorphisms obtained in this way are as close as possible
to subgraph isomorphism subject to bounded tree-width, resulting in a pattern
set of higher predictive performance as shown empirically in Section 5. Using
this definition, we consider the following pattern generation problem:

Frequent Maximally Constrained Tree Mining (FMCTM) Problem:
Given a finite set D of graphs and integers t, h, k > 0, list all (H, C) ∈ Lk

max

such that |V (H)| ≤ h and freq((H, C),D) ≥ t, where freq((H, C),D) de-
notes the (absolute) frequency of the PIHom tree pattern (H, C) in D, i.e.,
freq((H, C),D) = |{G ∈ D : H −→

C
G}| .

PIHom tree patterns satisfying the frequency constraint in the definition
above will be referred to as frequent PIHom tree patterns, or simply frequent
patterns. As mentioned earlier, one of the most important distinguishing features
of the problem setting above is that the pattern matching operator is not static
(i.e., fixed in advance), but dynamic, in contrast to all traditional frequent graph
mining algorithms. Clearly, whether a tree pattern is frequent or not directly
depends on the underlying set of constraints applied in the embedding operator.
It is therefore necessary to output a frequent tree along with the injectivity
constraints defining the (dynamic) pattern matching operator, i.e., the output
is always a pair (H, C), instead of H only. Notice that in this work we are not
explicitly interested in the semantical properties of the patterns but rather in
the binary feature space spanned by them.

The parameter h in the problem definition provides an upper bound on the
size of the output patterns. It ensures that the algorithm solving the FMCTM
problem will always terminate. It is not difficult to see that without h, the output
of the FMCTM problem may contain infinitely many frequent patterns. We also
note that the output O of the FMCTM problem may contain frequent patterns
that are homomorphism equivalent. Furthermore, the elements of O are not
necessarily cores. In case the output is required to be a non-redundant subset of
Lk
c , after the computation of O, one can first remove all patterns from it that

are redundant w.r.t. homomorphism equivalence and then calculate the core for
each pattern remaining in O. Since all patterns in O have bounded tree-width,
both steps can be performed in time polynomial in the size of O.

4.3 The Mining Algorithm

In this section, we present our algorithm solving the FMCTM problem and prove
that it is correct and enumerates the output patterns in incremental polynomial



Algorithm 1 Listing Frequent Maximally Constrained Trees

input: graph dataset D, integers t, k, h > 0

output: all t-frequent patterns of Lk
max with size at least 1 and at most h

Enumerate((H, C)):
1: R := Refinements((H, C), k)
2: for all (H ′, C′) ∈ R do
3: if |V (H ′)| ≤ h ∧ (H ′, C′) 6∈ O ∧ freq((H ′, C′),D) ≥ t then
4: print (H ′, C′) and add it to O
5: Enumerate((H ′, C′))

Main:

1: O := ∅
2: Enumerate((⊥, ∅)) // ⊥ denotes the empty graph

time. For the reader’s convenience we ignore a number of (standard) optimiza-
tion, implementation, and further simplification issues from this short paper and
provide only a simplified version of the algorithm implemented.

We guarantee efficiency (i.e., incremental polynomial time) by considering
the partial order �si on Lk

max, instead of the preorder �h, where �si is de-
fined as follows: For all (H, C), (H ′, C′) ∈ Lk

max, (H, C) �si (H ′, C′) iff there ex-
ists a subgraph isomorphism from H〈C〉 into H ′〈C′〉. Clearly, freq((H, C),D) ≥
freq((H ′, C′),D) whenever H〈C〉 �si H

′〈C′〉, i.e., frequency is anti-monotonic on
the poset (Lk

max,�si). Thus, maximal PIHom tree patterns are closed down-
wards w.r.t. frequency. While the poset (Lk

max,�si) allows for efficient pattern
enumeration, the output may contain patterns that are homomorphism equiva-
lent. That is, the price we have to pay for the positive complexity result is that
the output may contain some redundant patterns.

Algorithm 1 is based on the recursive function Enumerate generating the
output patterns in a DFS manner. Its input consists of the same parameters
D, t, h, and constant k as the FMCTM problem. The output patterns already
generated are stored in the global variable O. The algorithm calls Enumerate
with the empty pattern (⊥, ∅), where ⊥ denotes the empty graph (line 2 of
Main). As a first step (line 1 of Enumerate), function Refinements generates
the set of refinements for the input pattern (H, C); the process governing how
new candidate patterns are generated is determined by the refinement operator
sketched below. If a newly generated candidate pattern (H ′, C′) (i) fulfills the size
constraint (i.e, |V (H ′)| ≤ h), (ii) has not been generated before (i.e., (H ′, C′) /∈
O), and (iii) is t-frequent (i.e., freq((H ′, C′),D) ≥ t), we print it, store it in O,
and call Enumerate recursively for this new frequent pattern (lines 3–5).

Refinement Operator Function Refinements in Algorithm 1 returns the set R
of refinements for a pattern (H, C) ∈ Lk

max and k > 0. All patterns (H ′, C′) ∈ R
are required to satisfy the following conditions: (i)H ′ is a supertree ofH obtained
by extending H with a new vertex and edge, (ii) C ⊆ C′, and (iii) (H ′, C′) ∈ Lk

max,



i.e, it is maximal w.r.t. tree-width k. That is, trees of size n are extended into
trees of size n + 1 by condition (i). Furthermore, condition (iii) implies that
H ′〈C′〉 is a k-tree if |V (H ′)| > k + 1; o/w it is a complete graph.

The algorithmic characterization of k-trees (cf. Section 2) gives rise to the
following natural refinement operator on Lk

max: A pattern (H ′, C′) of size n + 1
is among the refinements of a pattern (H, C) ∈ Lk

max of size n iff (H ′, C′) can be
obtained from (H, C) in the following way: If n = 0 (i.e., (H, C) = (⊥, ∅)), we
define the refinements of (H, C) by the set of graphs consisting of a single vertex
(and no edges, as we consider loop-free graphs).2 Otherwise, i.e., for n > 0, we
proceed as follows: (i) Introduce a new vertex u. (ii) If n ≤ k, then connect
u to a vertex v ∈ V (H) and add an injectivity constraint uv′ to C for every
v′ ∈ V (H) \ {v}; o/w select a k-clique C in H〈C〉, connect u to a vertex v of C
in H, and add an injectivity constraint uv′ to C for every v′ ∈ V (C) \ {v}.

We are ready to state our main result:

Theorem 2. For any D, t, k, and h, Algorithm 1 is correct and generates the
output patterns in incremental polynomial time.

5 Experimental Evaluation

This section is concerned with the empirical evaluation of our approach. In
particular, we evaluate the predictive performance of frequent maximally con-
strained PIHom tree patterns and the runtime of the algorithm presented in
Sect. 4. For our experiments we used a modified variant of Algorithm 1 making
it practically feasible. We omit these technical details from this short version.

In the experiments below we first analyze how the degree of injectivity in
PIHom tree patterns impacts the resulting predictive performance. To answer
this question, we fix a set of tree patterns and embed the data into feature spaces
spanned by the tree patterns w.r.t. partially injective homomorphisms with in-
creasing degree of injectivity, ranging from ordinary homomorphism to subgraph
isomorphism. Our results clearly indicate a strong correlation between degree of
injectivity and predictive performance. We then compare the predictive perfor-
mance of the patterns generated by our practical algorithm with that of ordinary
frequent subtrees on different benchmark datasets. We found that the predictive
performance achieved by PIHom tree patterns for already moderate amounts of
injectivity constraints compares favorably to that of ordinary frequent subtrees,
which, in turn, are very close to frequent subgraphs in predictive power. Finally,
we provide runtime measures comparing our algorithm to state-of-the-art graph
miners like GASTON [11] and FSG [5]. We show that while these algorithms
are practical only for very restricted graph types, our approach performs well
on arbitrary graph datasets. In particular, while our implementation was gener-
ally slower on the real-world benchmark chemical graph datasets considered, it

2 In case of labeled graphs, the number of such singleton graphs is equal to that of
the different vertex labels in D.



clearly outperforms GASTON [11] and FSG [5] on artificial datasets containing
only slightly more complex graph structures beyond molecular graphs.

Datasets To evaluate the predictive performance, we use four benchmark
molecular graph datasets. This choice is mainly of practical nature. In partic-
ular, the molecules considered are of a fairly simple structure [9], allowing for
the application of state-of-the-art frequent subgraph mining systems that are
generally very efficient on molecular graph data. This enables us to compare the
predictive performance of our method to “gold-standard” results achieved by
frequent subgraphs (w.r.t subgraph isomorphism).

The experiments are conducted on the well-established real-world datasets
NCI1, NCI109, MUTAG, and PTC annotated for different binary target prop-
erties. NCI1 and NCI109 contain 4,110 (resp. 4,127) compounds. The graphs
in these two datasets have 30 vertices and 32 edges on average. The MUTAG
dataset contains merely 188 compounds; the graphs in this dataset have 18 ver-
tices and 20 edges on average. Finally, the PTC dataset contains a total of 344
graphs, with an average number of 26 vertices and edges.

As most frequent subgraph mining systems like GASTON [11] are specifically
designed to cope with graphs of simple structure (such as molecular graphs), run-
time comparisons on only chemical graph datasets are not expressive enough.
We therefore consider also artificial graph datasets generated according to the
Erdős-Rényi random graph model. Each such dataset consists of 50 graphs
with an average size of 25, corresponding to the chemical datasets above. The
structural complexity of these graphs G corresponds to the edge/vertex ratio
q = |E(G)|/|V (G)|. In our experiments, only connected graphs are considered.

Experimental Setup Using 10-fold cross-validation, the predictive perfor-
mance was measured in terms of AUC obtained by support vector machines
(SVM) with the RBF kernel. In all experiments we used LIBSVM [3]. We ap-
plied SVM to the images of the graphs in the binary feature space spanned by
the frequent patterns generated. The parameters of SVM (i.e. C and γ) were
fixed throughout all classification tasks for a given database to avoid overfitting
by chance. For all frequent pattern generation methods, we chose a frequency
threshold value of 5%. Prior experiments have shown that patterns of fairly low
sizes achieve the overall best predictive performances. We therefore limit the size
of patterns to at most 9 vertices.

5.1 Degree of Injectivity vs. Predictive Performance

We first report our results investigating the influence of the degree of injectivity
in PIHom tree patterns on the predictive performance. To exclude possible side-
effects caused by different pattern sets, for all datasets in our experiments we
first fix a set S of tree patterns by selecting some random subset of the frequent
trees generated w.r.t. subgraph isomorphism. Then, for all H ∈ S we consider
a PIHom tree pattern Hk = (H, Ck) that is maximally constrained w.r.t. tree-
width k if k = 1, . . . , 4; o/w it is fully constrained, i.e., C> = [V (H)]2 \ E(H).
Since H is a tree, C1 = ∅ and hence H1 is the least element in the lattice



100 200 500 all

0.7

0.8

0.9

A
U

C

MUTAG

100 200 500 1000 2000 all

0.6

0.65

0.7

0.75

PTC

100 200 500 1000 2000 all

0.7

0.75

0.8

0.85

0.9

Number of Patterns

NCI109

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1 k = 2 k = 3 k = 4 k = >

Fig. 3: Predictive performances in AUC for different degrees of injectivity gov-
erned by tree-width k. k = > corresponds to ordinary subgraph isomorphism.

(LH ,�), corresponding to ordinary homomorphism from H. Analogously, H>
contains all possible injectivity constraints and is therefore the greatest element
of (LH ,�), corresponding to ordinary subgraph isomorphism fromH. In this way
we can simulate monotonically increasing degrees of injectivity in the pattern
matching operator for a tree pattern H, leading from ordinary homomorphisms
to subgraph isomorphisms. The degree of injectivity in the pattern matching
operator is directly governed by k. For all k ∈ {1, . . . , 4,>} we take the feature
set Sk = {Hk : H ∈ S} and embed all target graphs into the binary feature
space spanned by Sk in the usual manner.

Figure 3 shows the predictive performances achieved for different degrees of
injectivity defined by k. All four datasets indicate a significant difference between
employing homomorphism (k = 1) and subgraph isomorphism (k = >) as the
pattern matching operators. While the results for MUTAG and PTC are fairly
volatile due to their small size, with k = 3 and subgraph isomorphism yielding
the best results, the datasets NCI1 and NCI109 clearly show a direct correlation
between the degree of injectivity and predictive performance: Increasing values
of k in almost every case yield an improvement in predictive performance. Notice
that the gap between k = 1 (i.e., ordinary homomorphism) and k = 2 is already
substantial for the datasets NCI1 and NCI109. For MUTAG and PTC it seems
that k = 3 is necessary to significantly improve the predictive performance over



Dataset Frequent Patterns |V | = 5 |V | = 6 |V | = 7 |V | = 8 |V | = 9

MUTAG s.g.i. graphs 73.18± 16.46 87.94± 10.70 88.29± 7.78 90.90± 6.83 91.99± 6.65
s.g.i. trees 73.18± 16.46 84.07± 11.71 86.87± 6.23 89.84± 6.34 91.63± 5.89
p.i.h. trees (k = 4) 73.18± 16.46 83.39± 11.20 87.10± 5.55 89.32± 7.66 90.49± 6.98
p.i.h. trees (k = 3) 75.43± 13.69 83.51± 11.11 88.17± 6.38 89.15± 7.88 90.21± 8.36
p.i.h. trees (k = 2) 61.44± 15.28 71.72± 10.08 76.03± 9.03 76.35± 12.28 76.92± 14.90

PTC s.g.i. graphs 65.11± 8.32 66.82± 7.65 71.81± 8.27 73.69± 9.13 73.07± 9.34
s.g.i. trees 65.11± 8.32 66.82± 7.65 71.91± 8.18 73.76± 9.09 73.08± 9.39
p.i.h. trees (k = 4) 65.11± 8.32 69.26± 8.25 72.94± 8.55 72.54± 8.53 72.38± 8.02
p.i.h. trees (k = 3) 64.30± 7.41 68.12± 8.03 71.87± 8.64 73.37± 9.01 73.24± 8.55
p.i.h. trees (k = 2) 65.26± 7.80 66.79± 7.75 66.75± 7.31 67.53± 7.26 67.84± 6.53

NCI1 s.g.i. graphs 80.59± 2.28 85.97± 1.89 88.32± 1.11 89.20± 0.96 89.33± 1.13
s.g.i. trees 80.59± 2.28 85.65± 1.83 88.08± 1.06 88.93± 1.03 89.14± 1.19
p.i.h. trees (k = 4) 80.59± 2.28 86.41± 1.53 87.86± 1.08 88.35± 1.17 88.30± 1.29
p.i.h. trees (k = 3) 81.74± 2.10 86.26± 1.42 87.85± 1.08 88.65± 1.23 88.77± 1.32
p.i.h. trees (k = 2) 80.28± 2.51 84.45± 1.97 86.37± 1.58 87.27± 1.52 87.68± 1.35

NCI109 s.g.i. graphs 81.09± 1.89 85.82± 1.77 88.27± 1.14 88.53± 1.60 88.55± 1.77
s.g.i. trees 81.09± 1.89 85.75± 1.78 88.01± 1.20 88.29± 1.54 88.37± 1.72
p.i.h. trees (k = 4) 81.09± 1.89 86.38± 1.50 87.63± 1.73 87.64± 1.87 87.54± 2.03
p.i.h. trees (k = 3) 81.24± 0.74 86.21± 1.46 87.60± 1.22 87.72± 1.89 87.77± 2.02
p.i.h. trees (k = 2) 80.15± 2.07 84.43± 1.47 86.42± 1.01 86.79± 1.13 86.72± 1.66

Table 1: Prediction measures stated as AUC values in % for different tree-width
choices k in contrast to freq. subgraphs and subtrees (s.g.i.: subgraph isomor-
phism, p.i.h.: partially injective homomorphism). Values are calculated by a
SVM on feature vectors w.r.t. pattern graphs of size at most |V |.

homomorphism. In summary, a fairly low degree of injectivity already suffices to
considerably outperform the predictive power of ordinary homomorphism.

5.2 Predictive Performance

We also evaluate the predictive performance of the frequent maximally con-
strained PIHom tree patterns generated by our algorithm. We compare their
predictive power to that achieved by the set of (ordinary) frequent subtrees,
as well as frequent subgraphs w.r.t. subgraph isomorphism. The binary feature
vectors for the target graphs are calculated in the same way as described in
the previous section for the patterns generated by our algorithm, for ordinary
frequent subtrees, and for ordinary frequent subgraphs.

Table 1 shows the predictive performance of our approach for different pat-
tern sizes (cf. the last five columns). The full sets of frequent subgraphs perform
slightly better than its subset formed by frequent subtrees. Interestingly, already
for tree-width k = 3, the absolute difference (in AUC) to frequent subgraphs (cf.
row “s.g.i. graphs”) and to ordinary frequent subtrees (cf. row “s.g.i. trees”) is
marginal for all cases, but one (MUTAG with |V | = 5). In all cases, the differ-
ences are statistically insignificant (for p = 0.05). Hence, our approach offers an
attractive trade-off between runtime (depending on k) and predictive power.



MUTAG PTC NCI1 NCI109
Erdős-Rényi random graphs

|Σ| = 1 |Σ| = 2
q = 1.0 q = 1.5 q = 2.0 q = 3.0 q = 1.0 q = 1.5 q = 2.0 q = 3.0

GASTON (EL) 0.1 0.2 2.6 2.7 2.8 54.6 mem err mem err 1.8 20.1 1168.9 56464.6
GASTON (RE) 0.3 1.0 8.5 8.6 5.0 39.5 1163.0 31061.4 5.7 44.9 1120.2 24778.0

FSG 0.7 4.1 30.2 29.9 194.2 10584.9 10888.4 10852.5 19.9 82.8 2375.7 58816.2
PIH Miner (k = 3) 0.8 3.4 27.3 24.1 0.3 1.3 2.8 8.4 5.3 16.3 149.9 622.8

Table 2: Runtimes (in sec.) of our algorithm in comparison to GASTON and FSG on
molecular and artificial datasets. Σ denotes the set of vertex labels. The cases in which
GASTON ran out of the necessary memory are marked by “mem err”. The maximum
size of patterns to be found was set to 10 and the minimum support was set to 5%
in all cases. Note that FSG does not restrict its search to trees but considers general
graphs, in contrast to all other algorithms.

5.3 Runtimes

We measured the runtimes of our algorithm and compared them to those achieved
with the state-of-the-art graph miners GASTON [11] (using the graph counting
methods embedding lists (EL) and recomputed embeddings (RE)) and FSG [5]
on real-world and artificial datasets. While molecules, having roughly as many
edges as vertices (i.e., having q ≈ 1.0), q is up to 3.0 in the artificial datasets.

Table 2 shows the running times for each algorithm and dataset. As expected,
GASTON and FSG perform very well on molecular graphs, compared to our
algorithm. However, for slightly more complex structures (i.e. q ≥ 2.0) the two
traditional graph miners become quickly infeasible for the correlation between
the number of embeddings and runtime. Our approach (referred to as PIH Miner
in Table 2) clearly outperforms FSG and GASTON on both artificial datasets
for q ≥ 2.0.

6 Concluding Remarks

To bridge the gap between homomorphisms (ILP) and subgraph isomorphisms
(graph mining), we proposed partially injective homomorphisms, a new kind
of dynamic pattern matching operator. We considered the efficiently enumer-
able fragments of frequent maximally constrained PIHom tree patterns w.r.t.
bounded tree-width and showed on benchmark molecular graph datasets that
their predictive performance is close to that of ordinary frequent subtrees (and
hence, to that of subgraphs as well). Since our algorithm does not assume any
structural properties on the input graphs, it is effectively applicable also to such
transaction graphs where most state-of-the-art pattern mining algorithms be-
come infeasible.

Our approach raises several questions. Perhaps the most interesting one is
the extension to more general relational vocabularies, bridging another gap be-
tween graph mining and ILP in the richness of the relational vocabularies. To
formulate this generalization, we note that any PIHom(H,G, C) problem can
polynomially be reduced to θ-subsumption between DATALOG goal clauses (or



equivalently, Boolean conjunctive queries) as follows: Using a relational vocabu-
lary Σ consisting of binary and unary predicate symbols only, represent (H, C)
as a DATALOG goal clause QH with a body composed of a set of literals for H
and another set of literals of a distinguished binary predicate for the injectivity
constraints in C. Each vertex of H is represented by a unique variable in QH . For
a target graph G, represent the PIHom pattern (G, [V (G)]2) in a similar way by
a clause QG over the same Σ. It holds that QH θ-subsumes QG iff H −→

C
G. From

this reduction and our empirical results it is immediate that the predictive per-
formance of DATALOG goal clauses as patterns can also be improved by adding
injectivity constraints (i.e., literals of a distinguished binary predicate) to their
bodies. Considering our approach developed for graphs from the above logical
viewpoint, it would be interesting to generalize it to relational vocabularies con-
taining predicate symbols of arbitrary arities by considering such fragments of
Boolean conjunctive queries for which θ-subsumption is in P (cf. [7]).

References

1. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. In Proc. of the 21st Annual ACM Symposium on Theory of Computing,
(STOC), pp. 226–234. ACM, 1993.

2. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proc. of the 9th Annual ACM Symposium on Theory
of Computing, (STOC), pp. 77–90. ACM Press, 1977.

3. C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

4. V. Dalmau, P. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In Proc. of the 8th Int. Conf. on Principles
and Practice of Constraint Programming, pp. 310–326, 2002.

5. M. Deshpande, M. Kuramochi, N. Wale, , and G. Karypis. Frequent substructure-
based approaches for classifying chemical compounds. Knowledge and Data Engi-
neering, 17(8):1036–1050, 2005.

6. R. Diestel. Graph theory. Springer, Berlin, 2000.
7. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable

queries. J. Computer and System Sciences, 64(3):579–627, 2002.
8. T. Horváth and G. Turán. Learning logic programs with structured background

knowledge. Artificial Intelligence, 128(1-2):31–97, 2001.
9. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs

of bounded tree-width. Theoretical Computer Science, 411(31):2784 – 2797, 2010.
10. S. Nienhuys-Cheng and R. de Wolf, editors. Foundations of Inductive Logic Pro-

gramming, vol. 1228 of Lecture Notes in Computer Science. Springer, Berlin, 1997.
11. S. Nijssen and J. N. Kok. The gaston tool for frequent subgraph mining. Electronic

Notes in Theoretical Computer Science, 127(1):77–87, 2005.
12. N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-

width. J. Algorithms, 7(3):309–322, 1986.
13. D. J. Rose. On simple characterizations of k-trees. Discrete Mathematics, 7(3-

4):317–322, 1974.
14. P. Welke, T. Horváth, and S. Wrobel. Probabilistic frequent subtrees for efficient

graph classification and retrieval. Machine Learning, 2017. (to appear).


