Maximal Closed Set and Half-Space Separations in Finite Closure Systems

Classification in Finite Closure Systems

Florian Seiffarth¹

seiffarth@cs.uni-bonn.de ¹ Dept. of Computer Science, University of Bonn

Tamás Horváth^{1,2,3}

horvath@cs.uni-bonn.de ² Fraunhofer IAIS

Stefan Wrobel^{1,2,3}

wrobel@cs.uni-bonn.de

³ Fraunhofer Center for Machine Learning

Problem setting

Fraunhofer UNIVERSITÄT BONN IAIS

Classical problem: Separation in \mathbb{R}^d

Hyper-Plane Separation Problem: Given two sets $A, B \subseteq \mathbb{R}^d$, find a separating hyper-plane.

Theorem (Kakutani, 1937): Two sets in \mathbb{R}^d are **separable** by a hyper-plane iff their convex hulls are **disjoint**.

Separation in **Finite closure systems**

Half-Space Separation Problem: Given a closure system (E, C) and sets $A, B \subseteq E$, **decide** if A and B are half-space separable in (E, C).

Motivation:

• general concept

• structured input

• interesting examples

Problem: Kakutani's theorem does not hold! Example:

There are **no** half-spaces separating the disjoint closed sets 1 and 2.

(2) **Theorem:** The Half-Space Separation Problem is **NP-complete**. (2)

To overcome the negative result: Two approaches

special closure systems

Maximal Closed Set Separation Problem

simplify problem

Maximal Closed Set Separation Problem: Given a closure system (E, C) and sets $A, B \subseteq$ E, find maximal disjoint closed supersets of A and B.

• **caution:** maximal and <u>not</u> maximum

Solution: A *Simple Greedy Algorithm* processing the elements one by one.

Theorem: This greedy algorithm solves the Maximal Closed Set Separation problem by calling the closure operator at most 2|E| - 2 times.

Theorem: The greedy algorithm is **optimal** w.r.t. the number of closure operator calls.

Kakutani Closure Systems

Definition: A closure system (E, C) is Kakutani if *any* two disjoint closed sets are half-space separable.

 \bigcirc **Theorem:** Any algorithm requires in general $\Omega\left(2^{|E|/2}\right)$ closure operator calls to decide if a closure system is Kakutani.

Several closure systems are known to be Kakutani:

Trees

classification results

Distributive lattices

Theorem: The greedy algorithm (LHS) provides an algorithmic characterization of Kakutani closure systems.

use algorithm for classification **Experiments**

