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Basic Definitions

Closure operator

Half-space separation of
Half-space in (E, C) A BCEin (E,C)

Set system Closure system

set system (E, C) with: function c : E — E with:
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o AC (A
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Problem setting

Classical problem: Separation in R? Separation in Finite closure systems

Half-Space Separation Problem: Given a closure system (£,C) and sets A, B C F,

Hyper-Plane Separation Problem: Given two sets A, B C R%, find a separating decide if A and B are half-space separable in (F,C).
hyper-plane.
Motivation:
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Theorem (Kakutani, 1937): Two sets in R? are separable by a hyper-plane iff their

Problem: Kakutani’s theorem does not hold! Example:

convex hulls are disjoint. 1,2,3
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There are no half-spaces separating the disjoint closed sets [l and B.

Results

Theorem: The Half-Space Separation Problem is NP-complete.

To overcome the negative result: Two approaches special closure syst
ems

w

Maximal Closed Set Separation Problem Kakutani Closure Systems

Definition: A closure system (£, C) is Kakutani if any two disjoint closed sets are half-space

Maximal Closed Set Separation Problem: Given a closure system (£, C) and sets A, B C
separable.

F, find maximal disjoint closed supersets of A and B.

S cantions mazimat and not maximuin & Theorem: Any algorithm requires in general {2 (2|E / 2) closure operator calls to decide

Solution: A Simple Greedy Algorithm processing the elements one by one. if a closure system 1s Kakutani.

o ° ° ° ° @Several closure systems are known to be Kakutani:
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Theorem: This greedy algorithm solves the Maximal Closed Set Separation problem by Trees Distributive lattices

lling the cl tor at t2(F] — 21t :
calling the closure operator at most 2| £ HHeEsS Theorem: The greedy algorithm (LHS) provides an algorithmic characterization of Kak-

Theorem: The greedy algorithm is optimal w.r.t. the number of closure operator calls. utani closure systems.

Experiments
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half-space separable vertex sets over trees non half-space separable vertex sets over trees vertex classification over arbitrary graphs



