
hoPS: Probabilistic Subtree Mining for Small and Large Graphs
Pascal Welke

University of Bonn
Bonn, Germany

welke@cs.uni-bonn.de

Florian Seiffarth
University of Bonn
Bonn, Germany

seiffarth@cs.uni-bonn.de

Michael Kamp
Monash University
Melbourne, Australia

michael.kamp@monash.edu

Stefan Wrobel
University of Bonn and Fraunhofer IAIS

Bonn, Germany
wrobel@cs.uni-bonn.de

ABSTRACT

Frequent subgraph mining, i.e., the identification of relevant pat-
terns in graph databases, is a well-known data mining problem
with high practical relevance, since next to summarizing the data,
the resulting patterns can also be used to define powerful domain-
specific similarity functions for prediction. In recent years, signifi-
cant progress has been made towards subgraph mining algorithms
that scale to complex graphs by focusing on tree patterns and proba-
bilistically allowing a small amount of incompleteness in the result.
Nonetheless, the complexity of the pattern matching component
used for deciding subtree isomorphism on arbitrary graphs has
significantly limited the scalability of existing approaches. In this
paper, we adapt sampling techniques from mathematical combina-
torics to the problem of probabilistic subtree mining in arbitrary
databases of many small to medium-size graphs or a single large
graph. By restricting on tree patterns, we provide an algorithm that
approximately counts or decides subtree isomorphism for arbitrary
transaction graphs in sub-linear time with one-sided error. Our em-
pirical evaluation on a range of benchmark graph datasets shows
that the novel algorithm substantially outperforms state-of-the-art
approaches both in the task of approximate counting of embeddings
in single large graphs and in probabilistic frequent subtree mining
in large databases of small to medium sized graphs.

CCS CONCEPTS

•Mathematics of computing→Trees;Matchings and factors;
Graph algorithms; • Information systems → Data mining;
• Computing methodologies → Randomized search; Motif

discovery; • Theory of computation → Pattern matching.
ACM Reference Format:

Pascal Welke, Florian Seiffarth, Michael Kamp, and Stefan Wrobel. 2020.
hoPS: Probabilistic Subtree Mining for Small and Large Graphs. In Proceed-

ings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403180

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403180

1 INTRODUCTION

Frequent subgraph mining is a well known technique to identify
relevant patterns in graph databases. The resulting patterns can
be used to define powerful domain-specific similarity functions.
One common way of defining relevance is based on frequency [5]
of occurrence wrt. some matching criterion. Most commonly, sub-
graph isomorphism or induced subgraph isomorphism are used as
matching criterions, as they are intuitive and have been shown to be
semantically more meaningful than, e.g., homomorphism [16]. By
identifying the patterns in the mining process, frequent subgraph
mining can be interpreted as a form of representation learning
where each pattern represents a meaningful substructure in the in-
put graph, which often is relevant for further analysis. Furthermore,
identifying the frequency of known subgraphs up to a certain size
allows to efficiently compute similarity measures between graphs
which is essential in many machine learning algorithms [2].

In this work, we are interested in counting subgraph isomor-
phisms (i.e., not induced subgraph isomorphisms) of arbitrary size,
which is a basic building block for both representation learning and
frequency estimation. In particular, we are interested in a method
that works both for the transactional setting, where the input is a
database of many small to medium sized graphs, and for the setting
where the input is one large graph. Both tasks – unfortunately –
are computationally intractable [4, 6]. However, previous work has
shown a theoretically and practically feasible mining system that
restricts the pattern language to trees and allows the output to be
incomplete, i.e., allows dropping a few frequent subtrees [19].

We propose a novel embedding algorithm for trees, denoted
hoPS (Highly Optimistic Probabilistic Subtrees), which is named
after the vine, as the embeddings grow greedily from the embedding
of the root until no progress can be made. Importance sampling
similar to Fürer and Kasiviswanathan [3] – and its extension to
labeled graphs by Ravkic et al. [14] – provides a fast and accurate
algorithm for estimating the number of subgraph isomorphisms
in a large graph. Our algorithmic contribution is a linear time
algorithm for sampling and counting maximum matchings arising
as subproblems in each step of the algorithm, reducing the runtime
from exponential to linear in the pattern degree.

Note that counting induced subgraph isomorphisms, is known
as graphlet counting or sampling and a large number of works
have addressed practically fast methods for this purpose, see [15]
for a recent survey. Here, importance sampling1 has been used as

1 This is also known as Horvitz-Thompson estimation.

https://doi.org/10.1145/3394486.3403180
https://doi.org/10.1145/3394486.3403180

well [13]. The difference is that our algorithm considers trees of
arbitrary size in labeled graphs. Moreover, the current state-of-the-
art in graphlet sampling considers graphlets of up to eight vertices
[1, 13], while we consider patterns of arbitrary size, evaluating our
algorithm on patterns with up to 50 vertices. Koutis and Williams
[10] present a randomized algorithm that approximately decides
(with one-sided error) subgraph isomorphism in O

(
m2kk2 log2 k

)
time, wherem is the number of edges in the transaction graph and
k is the number of vertices in the pattern tree. While this work was
used by to identify frequent subtrees in a large graph [8], it does
not fulfill our scaling requirements. The runtime of hoPS instead
depends only linearly on the pattern size and the vertex degree of the
transaction graph, not on its overall size, making it highly scalable.

hoPS can also be used to answer the simpler question of whether
a pattern is present in a transaction graph or not and thus can
be used inside a generic frequent subgraph mining algorithm to
perform practically feasible and theoretically efficient incomplete
frequent subtree mining for arbitrary transactional graph databases.
Our empirical evaluation shows that this algorithm substantially
outperforms the state of the art on a range of benchmark graph
datasets. Our contributions are as follows:

(1) We offer a drop-in replacement for the embedding algorithm
considered by Fürer and Kasiviswanathan [3] and Ravkic
et al. [14] for the case that the patterns are trees. That is:
Using our algorithm, the theoretical guarantees of [3] hold
if the pattern vertex degree is bounded, and it can be easily
integrated in the practical system of [14].

(2) Our algorithm runs in linear time in the size of the pattern
(and the maximum degree of the transaction graphs) and
does not restrict the vertex degree of the pattern or trans-
action graphs. As a result, it improves the runtime of the
algorithms in [3, 14] by a factor that is exponential in the
maximum vertex degree of the pattern. In particular, it does
not require a maximum matching algorithm as subroutine,
rendering it fast and easy to implement.

(3) We empirically evaluate our algorithm for two common
graph mining settings: Similar to Ravkic et al. [14], we con-
sider approximate counting of embeddings in a single large
transaction graph and similar to [20], we consider probabilis-
tic frequent subtree mining in databases of many small to
medium sized graphs. We show that our algorithm substan-
tially outperforms its competitors in both settings.

2 BASIC NOTIONS

An (undirected) graphG = (V ,E) consists of a finite setV of vertices
and a set E ⊆ {X ⊆ V : |X | = 2}. An edge {u,v} ∈ E(G) will be
denoted by uv . Given G = (V ,E) we will often use the notation
V (G) := V and E(G) := E to refer to the vertex or edge set ofG . We
consider only simple graphs, i.e., loops and parallel edges are not
permitted. A labeled graph is a graph G together with a function
lG : E(G) ∪ V (G) → L that assigns a label from some finite set L
to each vertex and each edge. Labeled graphs can model chemical
molecules, protein-protein interactions, social networks, the Web
graph and other phenomena. A tree is a graph H that is connected
and |E(H)| = |V (H)| − 1.

r

u1 u2 u3

u4 u5 u6 u7

V1

V2

V3 V4

r

u1 u2 u3

u4 u5 u6 u7

(a)

v1

v2

v3

v4

v5

v6

v7

v8

v9 v10

(b)

Figure 1: Rooted and labeled (different labels are indicated

by the node border style) tree H with root r and OBD

V1, . . . ,V4 (left). Labeled graph G with tree isomorphism in-

dicated in red where the root node r is mapped to v1 (right).

The set N(v) := {w ∈ V (G) : vw ∈ E(G)} is the set of neigh-
bors of v . The cardinality of N(v) is called degree of v and de-
noted by δ (v). We denote ∆(G) := maxv ∈V (G) δ (v) and ∅δ (G) =

1
|V (G) |

∑
v ∈V (G) δ (v). A leaf is a vertex that has exactly one neigh-

bor. For V ′ ⊆ V we define N(V ′) = ⋃
v ∈V ′ N(v) \V ′.

An independent set S in a graph G is a subset S ⊆ V (G) such
that there are no edges between any v,w ∈ S . A bipartite graph

G = (A Û∪B,E) is a graph such that A and B are independent sets. In
a complete bipartite graph, each vertex in A is connected to each
vertex in B; hence it has |A| · |B | edges.

A labeled graph H = (V (H),E(H), lH) is subgraph isomorphic to
a labeled graphG = (V (G),E(G), lG) if there exists an injective map-
ping φ : V (H) → V (G) such that vw ∈ E(H) implies φ(v)φ(w) ∈
E(G) and for all nodes v ∈ V (H) and for all edges vw ∈ E(H) it
holds that lH (v) = lG (φ(v)) and lH (vw) = lG (φ(v)φ(w)). We will
often call H the pattern graph, and G the transaction graph.

A matching in a graphG is a setM ⊆ E(G) such that each vertex
v ∈ V (G) is contained in at most one edge e ∈ M . A maximum

matching is a matching M ⊆ E(G) such that all M ′ ⊆ E(G) with
|M | < |M ′ | are not a matching. A matching M ⊆ E covers a set
of vertices A ⊆ V (G), if every vertex a ∈ A appears in some edge
e ∈ M . We note that a matching M in a bipartite graph (A Û∪B,E)
that covers A can be seen as an injective mapping φ : A → B such
that φ(a) = b for all ab ∈ M . We will use this property frequently to
extend partial subgraph isomorphisms with compatible matchings.
Finally, let [n] := {1, . . . ,n}.

3 APPROXIMATE COUNTING OF SUBGRAPH

ISOMORPHISMS

We first discuss the approximation algorithm proposed by Fürer
and Kasiviswanathan [3] before presenting our improvements in
Section 4. Since we are interested in the theoretical and practical

aspects of the algorithm, we explain the details of an efficient imple-
mentation and analyze its runtime thoroughly. For the first time we
give a tight worst case analysis of its runtime. We will subsequently
present our improved hoPS algorithm in Section 4.

The algorithm estimates the number of subgraph isomorphisms
from a pattern graph H to a transaction graph G using importance
sampling. It requires an ordered bipartite decomposition (OBD) of H
and can be shown to be computationally efficient if this OBD has

r

u1

u2

u3

V1

V2

r

u1

u2

u3

v1

v1

v2

N(v1)

v3

v4

v5

φ1

Figure 2: A bipartite matching instance created in Line 8 of

Algorithm 1. Note that this instance (due to the labels) con-

sists of three disjoint complete bipartite blocks.

bounded width. Furthermore, they show that this method results
in a fully polynomial randomized approximation scheme (FPRAS)

for almost all transaction graphs. While this result is more of the-
oretical interest2, the algorithm works well in practice [14]. It is
based on the simple idea that if we pick a random embedding
for a pattern H with probability pi > 0 from the set of all em-
beddings CH (G) into G and calculate pi accurately, then the out-
put Z = 1/pi is in expectation the number of embeddings, i.e.,
E[Z] = ∑

i ∈CH (G) pi1/pi = |CH (G)|. The challenging part is to cal-
culate the embedding probability of the pattern. For that, we start
by introducing the decomposition that is required for the pattern.

Definition 3.1 ([3]). An ordered bipartite decomposition of a graph
G = (V ,E) is a sequence D(G) = V1, . . . ,Vl of subsets of V such
that

(1) V1, . . . ,Vl form a partition of V ,
(2) each Vi is an independent set in G, and
(3) ∀v ∈ V ∃k ∈ [l] such thatv ∈ Vi ⇒ N(v) ⊆

(⋃i−1
j=1Vj

)
∪Vk .

Several types of graphs are guaranteed to have an OBD, e.g.
trees and bipartite graphs [3]. See Fig. 1a and Fig. 2 for examples.
However, not all graphs have anOBD, the simplest case being the tri-
angle graph: Property 2 requires each set in the partition to contain
only a single vertex, but then Property 3 cannot be fulfilled, as each
vertex has two neighbors, which are in different Vi ’s. Hence any
ordering of theVi ’s dissatisfies this condition for the first singleton
in the order. Due to this fact Ravkic et al. [14] investigated whether
the algorithm still works in practice for arbitrary decompositions

(AD) that do not fulfill Property 3. Fürer and Kasiviswanathan [3]
require an OBD to bound the variance of the estimator to obtain a
FPRAS, but an AD suffices for the estimate to be unbiased. However,
as we will show in Section 6, the choice of decomposition also has
practical implications for the quality of results.

Algorithm 1 shows the pseudo code of the algorithm, relying
on subroutines that we will describe below. It first computes an
OBD/AD D(H) of the pattern H (Line 2) and then goes into a loop
2 It is practically infeasible to derive the required parameters for a given pair of graphs
and approximation factor.

Algorithm 1 The Algorithm of Fürer and Kasiviswanathan
input: A graph H , a graph G, and an integer k > 0
output: An unbiased estimate of the number of subgraph isomor-

phisms φ from H to G.
1: C := ∅
2: D(H) := ComputeDecomposition(H)
3: for all 1, . . . ,k do

4: for all v ∈ V (H) do φ(v) := None

5: φ(V1), c ′ := DrawInitialAssignment(V1,G)
6: c := c ′
7: for i = 2, . . . , |D(H)| do
8: (A Û∪B,Ei) := CreateMatchingInstance(Vi ,G)
9: M, c ′ := DrawAndCountMatchings(A Û∪B,Ei))
10: if |M | = |A| then
11: for all (a,b) ∈ M do φ(a) = b
12: c := c · c ′
13: else // we could not find a subgraph isomorphism
14: c := 0
15: Continue in Line 16
16: C := C ∪ {c}
17: return 1

k
∑
c ∈C c

for the importance sampling (Line 3). For this, it tries repeatedly to
incrementally build a subgraph isomorphism φ from H intoG start-
ing with the first partition set V1 of D(H). Each time, it computes
the inverse probability c(φ) of finding exactly this embedding by
the applied method, or zero if the method failed (cf. Lines 12 and 14).
In this way, Alg. 1 returns an unbiased estimate of the number of
subgraph isomorphisms from H to G: Each subgraph isomorphism
φ can be found with nonzero probability 1

c(φ) . Hence each subgraph
isomorphism contributes a value of one to the expectation of the
estimator. Repeating the sampling step i.i.d. for k iterations, the
algorithm returns the average of the individual estimates to reduce
the variance (Line 17).

To compute φ and c(φ) for an iteration k , the algorithm greed-
ily selects feasible injective assignments φ1, . . . ,φl for the parti-
tion sets V1, . . . ,Vl in the OBD/AD D(H) without ever changing
a decision that was made and sets φ =

⋃l
i=1 φi : V (H) → V (G).

Hence 1
c(φ) is the probability of choosing the assignment of the

first partition set among all feasible assignments, multiplied by the
probability of choosing the assignment of the second set among
all feasible mappings given the first choice, and so on. A feasi-

ble assignment of Vi , is an assignment φi : Vi → V (G) such that
φi =

⋃i
j=1 φ j :

⋃i
j=1Vj → V (G) is a subgraph isomorphism and

φ j for j < i are feasible assignments selected in previous steps.
DrawInitialAssignment (Line 4) draws a feasible assignment

forV1; CreateMatchingInstance (Line 8) addresses the otherVi ’s.
Recall that all Vi are independent sets. Hence, a random injective
assignment φ1 : V1 → V (G) is feasible if for all u ∈ V1 it holds
l(u) = l(φ1(u)). As a result, DrawInitialAssignment (Line 4)
can just randomly select an initial assignment by drawing vertices
without replacement from multiple bags of suitably labeled vertices.

For all Vi with i > 1, the feasibility of an assignment φi : Vi →
V (G) does not only depend onVi , but also on φi−1. For an extended

H

r u1

u2 u3

V1 V2

r u1

u2 u3

v4

v2

v5

v3

v1

φ1

G

Figure 3: A pattern graph H with OBD {V1,V2}, transaction
graph G, partial embedding φ1 : V1 → G (red arrows) and

matching instance for finding a feasible φ2.

φi to remain a subgraph isomorphism, we have to maintain (1) in-
jectivity, (2) for each edgeuu ′ ∈ E(H)withu ∈ Vi andu ′ ∈

⋃i−1
j=1Vj

there must be an edge φi (u)φi−1(u ′) ∈ V (G), and (3) compatible
labels of vertices (resp. edges) and their images under φi .3 We can
solve this by finding a matching covering Vi in the bipartite match-
ing instance (Vi Û∪V (G) \ im(φi−1),Ei). Here Ei is constructed by
adding uv for u ∈ Vi and v ∈ V (G) \ im(φi−1) if

(1) N(u) ∩⋃i−1
j=1Vj = ∅ and l(u) = l(v) or

(2) N(u) ∩⋃i−1
j=1Vj , ∅ and l(u) = l(v) and for all u ′u ∈ E(H)

with u ′ ∈ ⋃i−1
j=1Vj there exists an edge φi−1(u ′)v ∈ E(G)

with l(φi−1(u ′)v) = l(u ′u).
This means that we can map a vertex from Vi that is not connected
to any free vertex inV (G) with correct label, while we need to map
neighbors of vertices that are already embedded to neighbors of
their images. Figure 3 shows an example of creating a matching
instance for V2 with both kinds of vertices.

Once the matching instance is created by CreateMatchingIn-
stance (Line 8), the algorithm must draw a matching covering all
vertices in Vi to extend the (partial) subgraph isomorphism φi−1 to
Vi and count the number of all such matchings to get an estimate of
the inverse probability. [3, 14] propose to enumerate all maximum
matchings in the instance to do so. Before addressing the imple-
mentation and runtime of DrawAndCountMatchings (Line 9)
and the overall algorithm, we will first give an explicit example of
one iteration of the algorithm.

3.1 Example

We will now make an explicit example of one iteration of the
main loop of Algorithm 1. Consider the tree H with OBD D(H) =
{V1,V2,V3,V4} in Fig. 1a and the labeled graph G in Fig. 1b (node
labels are indicated by the border of the vertices; for simplicity, all
edges have the same label). We select an image v1 for r in Line 4
from five candidates and setφ1(r) = v1. ForV2, we construct a bipar-
tite graph between the neighborsV2 = {u1,u2,u3} of r inH and the
neighbors {v2,v3,v4,v5} of v1 in G in Line 8. Fig. 2 shows the cor-
responding matching instance. There are two maximum matchings,
that cover all neighbors of r and we chose {u1v2,u2v3,u3v5} at ran-
dom (Line 9), extend the embedding φ1 with the selected matching
3 Note that there are no edges with both endpoints in Vi and that all edges between
vertices in Vj and Vj′ with j < j′ < i were already processed in previous iterations.

(Line 11), multiply our current estimate by two, and continue. For
V3 and V4 there is now exactly one maximum matching in the cor-
responding bipartite instance, e.g. {u4v6,u5v7} for V4. As a result,
the algorithm finds an embedding and returns 5 · 2 · 1 · 1 = 10 as an
estimate for the number of subgraph isomorphisms. The probability
that the algorithm finds this embedding is exactly, by construction,
the inverse probability 1/10, namely 1/5 for choosingw1 as image
for r and 1/2 for choosing then {u1v2,u2v3,u3v5}. As one can see
by comparing the node degrees and the labels of H and G there
exists exactly one embedding of the rooted tree H in Fig. 1a into
the Graph G. Hence the expected value of the number of subgraph
isomorphisms is equal to one while the output for each iteration of
the algorithm is either 0 or 10.

3.2 Runtime Analysis

A rough runtime analysis of Alg. 1 was given in Fürer and Ka-
siviswanathan [3]. They show that Alg. 1 runs in polynomial time
if H has an OBD of bounded (i.e. asymptotically constant) width:
The width w(D) of an OBD (resp. AD) D is the maximum number
of neighbors4 of vertices in some Vi in any Vj with j < i , i.e.

w(V1, . . . ,Vl) = max
i ∈[l]

������N(Vi) ∩ ©­«
⋃
j<i

Vj
ª®¬
������ .

Furthermore, let the size of an OBD (resp. AD) be s(V1, . . . ,Vl) = l .
Remark 1. If H is a tree, a smallest-width OBD D(H) can be con-

structed in linear time [3]. This can be done by choosing an arbitrary

leaf as root r ∈ V (H), V1 = {r }, and an arbitrary top-down traversal

v1 = r ,v2, . . . of V (G), excluding the leaves. We then define Vi as the
set of children of vi−1 (see Fig. 1a for an example). Hence the width

of D(H) is either ∆(H) or ∆(H) − 1 and the size of D(H) is equal to
the non-leaf vertices of H , where r is not counted as a leaf.

We now (for the first time) give a more detailed worst-case run-
time analysis of Alg. 1 for tree patterns and argue that it is tight for
the implementation proposed by [14]. To this end, we need a bound
on the number of maximum matchings in a bipartite matching
instance. The following fact is well-known in combinatorics:

Lemma 3.2. Let G = (A Û∪B,E) with |A| ≤ |B | be a bipartite graph.
Then there can be up to

|A |−1∏
i=0

(|B | − i) = |B |!
(|B | − |A|)! (1)

maximummatchings. The bound is tight for complete bipartite graphs.

E.g., for a complete bipartite graph with |A| = |B | there are |A|!
different maximum/perfect matchings. As a result, it may prove
costly to explicitly enumerate all maximum matchings just to select
a single one of those uniformly at random:

Lemma 3.3. Let H be a tree with OBD D(H) and G be a graph.

Then the worst case runtime of Algorithm 1 as presented in [14] is

O

(
k · s(D(H)) · ∆(G)!

(∆(G) −w(D(H))! · (w(D(H)) + ∆(G))
)
.

4 Note that Ravkic et al. [14] define the width of an OBD/AD as maxi∈[l] Vi . The two
definitions can, however, differ by a factor of O (|E |).

Remark 2. In the case thatG is a d-regular graph with d > ∆(H)
the above runtime bound is tight. Furthermore, the bound is expo-

nential in ∆(H), and grows (for constant ∆(H)) polynomially with

increasing ∆(G) − ∆(H), with ∆(H) in the exponent. Hence this im-

plementation can only be applied to trees of bounded (small) degree.

If H is an arbitrary pattern graph, then Algorithm 1 can be even
slower. First, the worst case time complexity of computing an OBD
for an arbitrary graph H is unknown. Ravkic et al. [14] give two
exponential time algorithms for computing an OBD, if one exists.
Second, for general OBDs (or ADs) there is no guarantee that some
vertex in Vi is connected to any vertices in Vj with j < i . Hence,
such vertices must be connected in the matching instances (Lines 8–
9) to all uncovered vertices of G with identical label and naively
implementing the maximum matching enumeration results in a
runtime where each instance of ∆(G) must be replaced by |V (G)|.
Finally, note that even sampling a maximum matching almost uni-
formly at random takes O

(
|V (B)|7 · loд |V (B)|

)
time in a bipartite

graph B and an approximate count of the maximum matchings can
only be obtained in time O

(
|V (B)|11 · (loд |V (B)|)3

)
[7].5

While we have assumed a d-regular G for simplicity, a similar
situation occurs for large dense graphs or large sparse graphs with
a high average vertex degree (with a different size of B). Ravkic
et al. address this issue by choosing OBDs consisting of small sets
(resp. ADs of singletons), which reduces the runtime of the algo-
rithm. This, however, results in a high variance in the estimate, as
matching vertices individually reduces the probability of finding a
valid embedding, as we will show in Section 6.

4 THE HOPS EMBEDDING ALGORITHM

We now propose drop-in replacements for Algorithm 1 and analyze
the resulting runtime if the pattern graph H is a tree. The algo-
rithm, which we call hoPS6 retains all guarantees provided by [3].
Furthermore, its worst case runtime is linear in the pattern size
(instead of exponential in the pattern degree). Hence, the algorithm
remains computationally efficient for tree patterns of unbounded
degree. Another advantage is that it is very easy to implement; in
particular, the algorithm does not require a traditional maximum
matching algorithm as a subroutine. Theorem 4.1 summarizes the
results of this section.

Theorem 4.1. Let H be a tree and G be a graph. Then the hoPS

algorithm, a specialization of Alg. 1, can be implemented to run in

O (k · |V (H)| · ∆(G)) .
The main insight that allows these improvements is that the

bipartite instances created in Line 8 of Algorithm 1 have special
structurewhen the pattern graph is a tree and its OBD is constructed
as in Remark 1. Therefore we can sample a maximum matching
uniformly at random if one exists and compute the number of
such matchings, both in linear time in the number of vertices of the

bipartite matching instance. For the remainder of this section, we

5 The method described by Jerrum et al. addresses perfect matchings, but there exists
an easy transformation that results in (|B |− |A |)! perfect matchings for eachmaximum
matching in the original graph.
6 For convenience, we give the detailed pseudo-code in the appendix.

assume w.l.o.g. that we are given the bipartite graph (A Û∪B,E) with
|A| ≤ |B | in Line 8.

Theorem 4.2. A maximum matching in Line 9 of Algorithm 1

can be drawn uniformly at random in time O (|A| + |B |) if the input
pattern H is a tree.

The proof follows directly from Lemmas 4.5 and 4.6, which will
be presented in Section 4.1. But first, we prove Theorem 4.1.

Proof of Theorem 4.1. Theorem 4.1 follows from Theorem 4.2
by noting that the matching instances in Line 9 have size at most
|Vi | + ∆(G). Hence one iteration requires O

(∑
Vi (|Vi | + ∆(G))

)
=

O (|V (H)| · ∆(G)), as the Vi form a partition of V (H). □

4.1 Block Disjoint Bipartite Graphs

As an easy first step in sampling a maximum matching uniformly
at random, we first consider the case that (A Û∪B,E) is a complete
bipartite graph. Now, sampling a maximum matching uniformly at
random is simple: Just fix an arbitrary order onA and select an order
of the elements of B uniformly at random. This can be achieved,
e.g., by Fisher-Yates shuffle [see, e.g. 9, Chapter 3.4.2] in linear time.
We construct a matching by selecting {aibi : i ∈ [|A|]}, where ai
(resp. bi) is the ith element in the selected order of A (resp. B).
Then according to Lemma 3.2, there are |B |!

(|B |− |A |)! such maximum
matchings and each has the same probability to be generated by
the above method.

For arbitrary bipartite graphs (i.e., where some vertices from
A cannot be paired with some other vertices in B), the selection
scheme above does not necessarily result in a valid matching. First,
there may not be an edge between ai and bi in (A Û∪B,E). Second,
if we consider the matching M that consist of all edges aibi ∈ E,
then M might not be maximum. [3, 14] hence resort to explicit
enumeration of all maximum matchings to sample one of them
with uniform probability and obtaining their count. Recall from
Lemma 3.2 that this set has factorial size. In the case of the hoPS
algorithm, however, the bipartite matching instances allow for a
linear time exact algorithm for the sampling and counting problem.

Definition 4.3 (Block Disjoint Bipartite Graph). A bipartite graph
(A Û∪B,E) is block disjoint if there exist complete bipartite graphs
(A1 Û∪B1,E1), . . . , (Ax Û∪Bx ,Ex) such that

(A Û∪B,E) =
((Û⋃x

i=1Ai

)
Û∪
(Û⋃x

i=1Bi

)
,
Û⋃x

i=1Ei

)
is the disjoint union of these graphs.

Note that our definition of a bipartite graph allows Ai or Bi to
be empty for some or even all indices i . See Figure 2 for an example
of a block disjoint bipartite graph (V2 Û∪N(v1),E) created in Line 8
of Algorithm 1 for the tree and graph in Figure 1. Note, however,
that Figure 3 shows a matching instance arising for general graphs
H ,G, which is not block disjoint. Next, we show that all bipartite
matching instances arising in Algorithm 1 are indeed block disjoint
if the pattern H is a tree.

Lemma 4.4. The graph (A Û∪B,E) arising in Line 8 of Algorithm 1

is a block disjoint bipartite graph, if H is a tree with an OBD D(H) as
constructed in Remark 1.

Algorithm 2 Sampling a maximummatching uniformly at random
for block disjoint bipartite graphs
input: A block disjoint bipartite graph (A Û∪B,E)
output: A maximum matchingM drawn uniformly at random and

the count of all such matchings in (A Û∪B,E)
1: Split (A Û∪B,E) into disjoint complete bipartite graphs

(Aj Û∪Bj ,Ej), with
��Aj

�� ≤ ��Bj ��
2: M := ∅; c := 1
3: for all (Aj Û∪Bj ,Ej) do
4: Draw a maximum matching Mj in (Aj Û∪Bj ,Ej) uniformly

at random
5: M := M ∪Mj

6: c := c ·∏|Aj |
k=0 (

��Bj �� − k)
7: returnM, c

The proof can be found in the appendix.
Algorithm 2 shows the pseudo-code of an algorithm computing

the number of maximum matchings in a block disjoint bipartite
graph arising in Algorithm 1. It implements both CreateMatchin-
gInstance and DrawAndCountMatchings for a partition set
Vi , i > 1 that consists of the children of some vertex vi ∈ V (H)
(cf. Remark 1). Alg. 2 splits the bipartite graph (A Û∪B,E) into the
fully connected blocks, draws a random matching in each block as
described in the beginning of this section and returns the union
of all these matchings. Simultaneously, it computes the number of
maximum matchings in each block and returns the product of these
numbers. The lemma below shows that this behavior indeed results
in the required output.

Lemma 4.5. Algorithm 2 draws a maximum matching of a block

disjoint bipartite graph (A Û∪B,E) uniformly at random and returns

the number of maximum matchings.

Proof. To prove the lemma, we show that the union of maxi-
mum matchings drawn individually for the fully connected blocks
is a maximum matching in the block disjoint bipartite graph drawn
uniformly at random. As the complete bipartite graphs are dis-
connected from each other, each maximum matching of the block
disjoint bipartite graph can be partitioned into a set of maximum
matchings in the blocks. Furthermore, the union of a maximum
matching for each block is a maximum matching in the block dis-
joint bipartite graph. In fact, the number of maximum matchings
in the whole graph is the product over the numbers of maximum
matchings in each complete bipartite block. □

Lemma 4.6. Algorithm 2 requires O (|A| + |B |) time if the block

disjoint bipartite graph (A Û∪B,E) is given as in Lemma 4.4.

The proof can be found in the appendix.

5 ERROR BOUNDS

The hoPS embedding algorithm is a proper drop-in replacement,
so Thm. 1.2 in Fürer and Kasiviswanathan [3] can be applied.

Corollary 5.1. LetG ∈ G(n,p) be Erdős-Rényi andH a tree with

bounded vertex degree. Then, the hoPS algorithm is an FPRAS for

estimating the number of copies of H in G.

Graph |V | |E | ∅δ (G) ∆(G) density
YEAST 16 233 18 355 2.26 124 1.4 · 10−4
DBLP 393 230 447 650 2.28 1 036 5.7 · 10−6
WEBKB 5 732 6 750 2.36 133 2.0 · 10−4
FB 28 057 112 252 8.00 1 051 3.0 · 10−4
AMAZON 334 863 925 872 5.53 549 8.3 · 10−6
ORKUT 3 072 441 117 185 083 76.28 33 313 1.2 · 10−5
LIVEJOURNAL 3 997 962 34 681 189 17.35 14 815 2.2 · 10−6

Table 1: Graph datasets

However, in practice it is infeasible to calculate the constants
involved in their bound on the number of iterations k . Therefore,
we bound the number of iterations required to achieve a given
estimation accuracy ϵ with probability 1 − δ for arbitrary graphsG
based only on the number of vertices in H and the vertex degree of
G and H . For that, recall that each iteration of Alg. 1 is an estimator
ci with i ∈ [k] and final estimate of Alg. 1 is Ck = k−1

∑k
i=1 ci . Let

CH (G) denote the set of subgraph isomorphisms from a tree H to
G. Since all ci are unbiased estimators, E[ci] = E[Ck] = |CH (G)|.
Furthermore, for all i , 0 ≤ ci ≤ UH (G), where UH (G) denotes an
upper bound on |CH (G)|. It follows from Lemma 3.2 that

UH (G) ≤ |V (G)|
(

∆(G)!
(∆(G) − ∆(H))!

) |V (H) |−1

≤ |V (G)| ∆(G) |V (H) |∆(H) .
(2)

With this we can bound the estimation error for arbitrary graphs.

Proposition 5.2. For ϵ,δ > 0, a tree H and a graph G , it holds

for Alg. 1 with the hoPS embedding that

P
[���Ck − |CH (G)|

��� ≥ ϵ |CH (G)|
]
≤ 2 exp

(
− 2kϵ2 |CH (G)|2
|V (G)| ∆(G) |V (H) |∆(H)

)
.

In order to achieve a confidence of δ , Alg. 1 must be run with

k ≥ |V (G)| ∆(G) |V (H) |∆(H)

2ϵ2 |CH (G)|2 ln 2
δ
.

The proof can be found in the appendix. Note that this bound is
linear in |V (G)| and polynomial in ∆(G) but exponential in |V (H)|
and ∆(H).

6 EXPERIMENTAL EVALUATION

We now show that in practice hoPS achieves low error rates, outper-
forms state-of-the-art algorithms, and improves on [14]. In particu-
lar, we consider two tasks: (1) Estimating the number of embeddings
of tree patterns in single large graphs (Sec. 6.1) and (2) finding an
approximate set of frequent subtrees in arbitrary databases of small
to medium size graphs (Sec. 6.2). All experiments are performed on
an Intel i7-4770 CPU with 3.40GHz and 16 GB DDR3-1600 RAM.
Our code and data are available at https://github.com/pwelke/hops.

6.1 Approximate Counting in Large Graphs

In the first part of the experiments we compare hoPS to the natural
baseline algorithms introduced by Ravkic et al. [14] and an exact

https://github.com/pwelke/hops

Graph pattern
size

#finished
(#total) ∅ #embed. ∅ runtime [s]

YEAST 15 87(87) 49 236(±53 228) 2 458(±3 853)
DBLP 10 24(26) 322 879(±353 522) 2 698(±6 453)
WEBKB 10 22(92) 153 129(±173 630) 6 302(±8 450)
FB 10 24(68) 176 150(±0) 2 326(±158)

Table 2: Results of the exact algorithm

algorithm [17]. We implemented the hoPS algorithm within their
framework7. In the second part, we investigate how hoPS scales
to large unlabeled graphs from [11] (see the last three graphs from
Table 1). To this end, we implemented our algorithm in the snap
framework [12], as it is more memory efficient than the pure Python
implementation of Ravkic et al..

Comparison to Exact and Approximate Algorithms. For exact eval-
uation and comparison with Ravkic et al. [14] we choose the graphs
YEAST, DBLP, WEBKB and FACEBOOK (FB) (see Table 1) and
pattern graphs of sizes 10 and 15 in the case of YEAST such that
the exact algorithm finishes for an acceptable number of patterns
(c.f. Ravkic et al. [14] and Table 2). Due to space limitations other
graphs considered by Ravkic et al. [14] and smaller pattern sizes
they provided are not presented in this paper. For each graph 100
patterns of the size reported in Tab. 2 which are known to appear
in the graph are evaluated. As hoPS is specific for trees all the
evaluations are done with tree patterns. Except for DBLP, over
two thirds of all given patterns are trees, see Table 2. At first, we
run the exact algorithm of Ullmann [17] with a time limit of 10h
for each tree pattern for all the graph data. Only tree patterns for
which the exact algorithm finishes within this time limit are used
for evaluation. The average8 runtime for finding the exact number
of embeddings together with the average of the exact embedding
numbers is denoted in Table 2.

As a first evaluation we compare the relative error wrt. the exact
number of embeddings of the hoPS algorithm to that of OBD, AD
and random introduced in [14]. OBD implements Alg. 1 with exact
OBD search, AD uses a flattened OBD that contains singleton parti-
tions. The algorithms run on each tree pattern (chosen as described
above) within a time limit of 60 seconds on the corresponding
graphs for the estimation. Figure 4 shows the average relative error
every 2 seconds. hoPS significantly outperforms all competitors on
the four datasets. After one minute the relative error on all datasets
is at most half as high as the closest competitor (c.f. Table 3). This
is impressive noting that the graphs have different structure. While
DBLP is relatively sparse having some nodes with very high degree,
YEAST, WEBKB and FB are denser graphs (c.f. Table 1). Moreover,
hoPS is also more stable concerning the standard deviation of its
predictions as shown by the filled areas in Fig. 4 and in Table 3.
Another advantage of hoPS, explaining its good performance com-
paring to OBD and AD, is that the number of iterations is higher
and it also more frequently finds an embedding, see Table 3. E.g.,
for YEAST and DBLP hoPS finds an embedding in 0.49% resp. 12.3%
7Code and data are available at https://dtai.cs.kuleuven.be/software/gs-srl.
8The average is always taken over all patterns where the exact algorithm finished
within the time limit. Standard deviations are displayed in parentheses.

2 20 40 60
0

0.2

0.4

0.6

0.8

1

YEAST

2 20 40 60
0
0.1
0.2
0.3
0.4
0.5

DBLP

hoPS AD
random OBD

2 20 40 60
0

0.2

0.4

0.6

0.8

1
WEBKB

2 20 40 60

10−2

10−1

FACEBOOK

Time [s]
Re

la
tiv

e
Er
ro
r

Figure 4: Comparisons of hoPS, OBD, AD and random base-

line algorithm on YEAST, WEBKB and DBLP graphs

of all iterations while for OBD we have 0.19% resp. 10.4% and for
AD 0.41% resp. 11.2%. AD has a comparable success rate only for
WEBKB. We assume that this is the result of (1) solving matching
instances instead of just embedding single neighbors as in AD and
(2) ensuring locality through our choice of OBD.

Considering the convergence speed towards the expected value
we looked at the relative errors of the algorithms pattern-wise. In
Figure 5 each line shows the relative error on one tree pattern for
the YEAST graph. Note that the error is only displayed for discrete
time steps while the curves between two time steps are interpolated
linearly for presentation reasons. In this case we only compared the
two best algorithms on YEAST. Here, for some patterns the OBD
algorithm needs a lot more time to converge. The same behaviour
can also be observed in the case of the other graphs.

Finally, we note that the evaluation and hence the results differ
significantly from the ones presented in [14]. First, we only look at
tree patterns which is justified by [19]. Second, we consider a fixed
time interval of one minute for each pattern, while Ravkic et al.
normalize their plots by the runtime of the exact algorithm, which
is usually infeasible in practice and hence disregarded in this paper.

Scaling Experiments. We now resort to larger graphs and larger
patterns and consider the last three graphs given in Tab. 1. Due to
their size we cannot provide relative error plots, since any exact
algorithm is not expected to finish in acceptable time. To obtain
candidate patterns, we instead sample trees uniformly at random
which are likely to be frequent since G is unlabeled. To investigate
how hoPS scales with the pattern size on large graphsG , we gener-
ate 50 random trees H of size |V (H)| = 10, 20, . . . , 50 each and plot
it against the runtime per iteration. Figure 6 (left) shows a linear

https://dtai.cs.kuleuven.be/software/gs-srl

2 20 40 60
0

0.5

1

1.5

2
hoPS

2 20 40 60

OBD

Time [s]

Re
la
tiv

e
Er
ro
r

Figure 5: Pattern-wise relative error of hoPS (left) and OBD

(right) on YEAST. Each line indicates one pattern.

relation between the runtime and the pattern size, indicating that
hoPS establishes a new state of the art with respect to pattern size.

Normalizing with the average degree ofG (right) shows that the
runtime is furthermore bounded linearly by the average degree ofG
(note that Lemma 4.6 only shows that it is bounded by themaximum
degree of G). Thus, hoPS is at least as fast as the state-of-the-art
in terms of G. Note that the (normalized) runtime of hoPS on the
AMAZON dataset is substantially lower accross all pattern sizes.
This is due to the relatively low average degree (5.53) of AMAZON
which results in a high number of (fast) early terminations of hoPS,
as the random trees have a typical maximum degree of 4–6.

6.2 Probabilistic Frequent Subtree Mining

As a second application of our hoPS algorithm, we evaluate its
suitability for frequent subgraph mining in transactional graph
databases. Here, an important task is to decide whether a candi-
date pattern is subgraph isomorphic to at least t graphs in a given
database D = [G1,G2, . . . ,GN] of (small) graphs. We report results
on standard benchmark graph databases used in the graph kernel
community and on synthetic graphs created in [20].

hoPS can be used in this setting to decide with one-sided error,
whether a pattern is present in a graph, or not. That is, if hoPS
finds at least one embedding, we know that the pattern is subgraph
isomorphic to a graph; if no iteration is successful, the patternmight
or might not be subgraph isomorphic to a given transaction graph.
Other algorithms with this behavior have been studied under the
name probabilistic subtree mining [19, 20]. These methods work
by drawing a set of spanning trees for each graph in the database
randomly and then mining all frequent subtrees in the resulting
database consisting of a forest of spanning trees for each graph.
In the context of one-sided error an increased number of frequent
patterns for identical frequency threshold implies a lower error,
even if we do not know the true number of frequent patterns. We
hence evaluate our methods w.r.t. patterns found per time and
repeated the experiments in [19, 20] comparing to their probabilistic
subtree (PS) and boosted probabilistic subtrees (BPS) methods.

Figure 7 shows the number of patterns found in a given time bud-
get. Each marker on a line corresponds to a setting of the sampling
parameters for the methods hoPS, PS, and BPS. hoPS outperforms
the other probabilistic methods on the synthetic graph datasets

10 20 30 40 50
0

1

2

3

4 ·10−4 Runtime

10 20 30 40 50
0

2

4

·10−6Normalized Runtime

AMAZON
ORKUT
LIVEJOURNAL

Pattern size

m
in
/It
er
at
io
n

m
in/(Iteration·∅

δ(G))

Figure 6: Runtime evaluation of hoPS for large graphs as a

function of tree size

and on the more complicated real world datasets (AIDS99, DD, and
POKEC) by a large margin. For example, on DD hoPS requires 457
seconds to obtain 32447 patterns, PS 1039 seconds for only 29493
patterns, and BPS 1453 seconds for 29594 patterns. On NCI1, how-
ever, hoPS is outperformed by PS and BPS. An exploratory analysis
of the patterns found by PS and hoPS suggests that PS finds more
patterns of large maximum degree when the transaction graphs
have low maximum degree (as is the case for molecular datasets).

7 CONCLUSION

We have proposed hoPS, a fast and easy-to-implement algorithm
to estimate the number of subgraph isomorphisms from a tree into
an arbitrary graph. We have provided theoretical guarantees on
the runtime and variance of our algorithm and have shown that
it outperforms its competitors by a large margin in two relevant
scenarios. We note that hoPS only requires local read-only access
to the transaction graph. Hence it can easily run in parallel and can
be integrated in large scale distributed graph databases.

Our results rely on a fast algorithm to sample maximum match-
ings. As an immediate consequence of Lemma 4.6, given a block
disjoint bipartite graph (A Û∪B,E), we can preprocess it in O (|E |)
time to obtain the hash map representation above and are then able
to (1) compute the number of maximum matchings and (2) draw a
maximum matching uniformly at random inO (|A| + |B |) time. It is
an open question whether other classes of bipartite graphs allow
linear time algorithms for both these problems.

Finally, our algorithm can be adapted to estimate the number of
homomorphisms from a tree into a graph, as well. In this setting,
Algorithm 2 only needs to (1) draw elements from B ∪ {p} with
replacement and (2) give |B ∪ {p}| |A | as the correct estimate of
partial homomorphisms in a single block of a block disjoint bipartite
graph. Drawing with replacement can be implemented in the same
asymptotic time as shuffling, hence the runtime analysis still holds.

ACKNOWLEDGEMENTS

This research was partially funded by the Federal Ministry of Edu-
cation and Research of Germany as part of the competence center
for machine learning ML2R (01|S18038C) and was partially funded
by the German Research Foundation (DFG) under Germany’s Ex-
cellence Strategy – EXC 2070 – 390732324.

Graph iterations / min successful tries rate relative error relative std. deviation
hoPS OBD AD hoPS OBD AD hoPS OBD AD hoPS OBD AD

YEAST 635 639 423 792 429 777 0.0049 0.0019 0.0041 0.073 0.134 0.901 0.10 0.19 0.91
DBLP 554 945 382 822 326 877 0.123 0.104 0.112 0.016 0.062 0.205 0.020 0.081 0.300
WEBKB 568 284 353 742 276 121 0.264 0.162 0.251 0.012 0.189 0.125 0.017 0.389 0.184
FACEBOOK 238 849 77 762 47 859 0.999 0.999 0.999 0.002 0.004 0.004 0.003 0.005 0.005

Table 3: Extended Results of the estimated subgraph isomorphism number for hoPS, OBD and AD with the number of algo-

rithm tries, the success rate, the relative error after 60s and the relative standard deviation over the patterns after 60s.

0 100 200
0

2

4

6

·104 POKEC

hoPS
PS
BPS

0 2,000 4,000 6,000 8,000
0

2

4

6
·104AIDS99

0 1,000 2,000 3,000
0

2

4

·104 DD

0 500 1,000 1,500
0

0.5

1

·104NCI1

0 2,000 4,000
0

2

4

·104
REPdata_c2

0 2,000 4,000 6,000
0

2

4

6
·105

REPdata_c10

Time [s]

N
um

be
ro

fP
at
te
rn
s

Figure 7: Recall of frequent patterns per time in probabilis-

tic pattern mining on real world graph datasets

REFERENCES

[1] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast
Motif Counting via Succinct Color Coding and Adaptive Sampling. PVLDB 12,
11 (2019), 1651–1663. https://doi.org/10.14778/3342263.3342640

[2] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. 2005.
Frequent substructure-based approaches for classifying chemical compounds.
Transactions on Knowledge and Data Engineering 17, 8 (Aug. 2005), 1036–1050.
https://doi.org/10.1109/tkde.2005.127

[3] Martin Fürer and Shiva Prasad Kasiviswanathan. 2014. Approximately Counting
Embeddings into Random Graphs. Combinatorics, Probability & Computing 23, 6
(2014), 1028–1056. https://doi.org/10.1017/S0963548314000339

[4] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman.
[5] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern min-

ing: current status and future directions. Data Mining and Knowledge Discovery

15, 1 (2007), 55–86. https://doi.org/10.1007/s10618-006-0059-1
[6] Tamás Horváth and Jan Ramon. 2010. Efficient frequent connected subgraph

mining in graphs of bounded tree-width. Theoretical Computer Science 411, 31–33
(2010), 2784–2797. https://doi.org/10.1016/j.tcs.2010.03.030

[7] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. 2004. A polynomial-time approx-
imation algorithm for the permanent of a matrix with nonnegative entries. J.
ACM 51, 4 (2004), 671–697. https://doi.org/10.1145/1008731.1008738

[8] Ashraf M. Kibriya and Jan Ramon. 2013. Nearly exact mining of frequent trees
in large networks. Data Mining and Knowledge Discovery 27, 3 (2013), 478–504.
https://doi.org/10.1007/s10618-013-0321-2

[9] Donald E. Knuth. 1998. The art of computer programming, volume 2: (2nd ed.)

seminumerical algorithms. Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA.

[10] Ioannis Koutis and Ryan Williams. 2009. Limits and Applications of Group Al-
gebras for Parameterized Problems. In International Colloquium on Automata,

Languages and Programming (ICALP) Proceedings, Part I (Lecture Notes in Com-

puter Science, Vol. 5555). Springer, 653–664. https://doi.org/10.1007/978-3-642-
02927-1_54

[11] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[12] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Anal-
ysis and Graph-Mining Library. ACM Transactions on Intelligent Systems and

Technology (TIST) 8, 1 (2016), 1.
[13] Kirill Paramonov, Dmitry Shemetov, and James Sharpnack. 2019. Estimat-

ing Graphlet Statistics via Lifting. In ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, (KDD) Proceedings. ACM, 587–595.
https://doi.org/10.1145/3292500.3330995

[14] Irma Ravkic, Martin Žnidaršič, Jan Ramon, and Jesse Davis. 2018. Graph sam-
pling with applications to estimating the number of pattern embeddings and
the parameters of a statistical relational model. Data Mining and Knowledge

Discovery 32, 4 (2018), 913–948. https://doi.org/10.1007/s10618-018-0553-2
[15] Pedro Ribeiro, Pedro Paredes, Miguel E. P. Silva, David Aparicio, and Fernando

Silva. 2019. A Survey on Subgraph Counting: Concepts, Algorithms and Ap-
plications to Network Motifs and Graphlets. CoRR abs/1910.13011 (2019), 1–35.
arXiv:1910.13011 http://arxiv.org/abs/1910.13011

[16] Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel. 2018.
Mining Tree Patterns with Partially Injective Homomorphisms. In European

Conference on Machine Learning and Knowledge Discovery in Databases ECML

PKDD Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11052). Springer,
585–601. https://doi.org/10.1007/978-3-030-10928-8_35

[17] Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1
(Jan. 1976), 31–42. https://doi.org/10.1145/321921.321925

[18] Takeaki Uno. 1997. Algorithms for Enumerating All Perfect, Maximum and Maxi-
mal Matchings in Bipartite Graphs. In International Symposium on Algorithms and

Computation (ISAAC) Proceedings (Lecture Notes in Computer Science, Vol. 1350).
Springer, 92–101. https://doi.org/10.1007/3-540-63890-3_11

[19] Pascal Welke, Tamás Horváth, and Stefan Wrobel. 2018. Probabilistic Frequent
Subtrees for Efficient Graph Classification and Retrieval. Machine Learning 107,
11 (2018), 1847–1873. https://doi.org/10.1007/s10994-017-5688-7

[20] Pascal Welke, Tamás Horváth, and Stefan Wrobel. 2019. Probabilistic and Exact
Frequent Subtree Mining in Graphs Beyond Forests. Machine Learning 108, 7
(2019), 1137–1164. https://doi.org/10.1007/s10994-019-05779-1

https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1109/tkde.2005.127
https://doi.org/10.1017/S0963548314000339
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1016/j.tcs.2010.03.030
https://doi.org/10.1145/1008731.1008738
https://doi.org/10.1007/s10618-013-0321-2
https://doi.org/10.1007/978-3-642-02927-1_54
https://doi.org/10.1007/978-3-642-02927-1_54
http://snap.stanford.edu/data
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1007/s10618-018-0553-2
https://arxiv.org/abs/1910.13011
http://arxiv.org/abs/1910.13011
https://doi.org/10.1007/978-3-030-10928-8_35
https://doi.org/10.1145/321921.321925
https://doi.org/10.1007/3-540-63890-3_11
https://doi.org/10.1007/s10994-017-5688-7
https://doi.org/10.1007/s10994-019-05779-1

Algorithm 3 The hoPS embedding algorithm
input: A tree H , a graph G, and an integer k > 0
output: An unbiased estimate of the number of subgraph isomor-

phisms φ from H to G.
1: C := ∅
2: Select r ∈ V (H) uniformly at random
3: for all k ∈ {1, . . . ,k} do
4: for all v ∈ V (H) do φ(v) := None

5: Draw v ∈ W = {w ∈ V (G) : l(w) = l(r)} uniformly at
random

6: φ(r) := v
7: c := |W | · EmbedTree(r ,v,None)
8: C := C ∪ {c}
9: return 1

|C |
∑
c ∈C c

Function EmbedTree(u,v,p):
10: Initialize empty hash maps A,B
11: for all a ∈ N(u) \ {p} do A[l(a)_l(ua)].append(a)
12: for all b ∈ N(v) \ im(φ) do A[l(b)_l(vb)].append(b)
13: for all x ∈ A.keys() do
14: if |A[x]| ≤ |B[x]| then
15: Shuffle B[x]
16: for all i ∈ [|A[x]|] do φ(A[x][i]) := B[x][i]
17: c := c · |B[x] |!

(|B[x] |− |A[x] |)!
18: else c := 0
19: if c , 0 then
20: for all a ∈ N(u) \ {p} do
21: c = c ·EmbedTree(a,φ(a),u)
22: return c

A THE HOPS EMBEDDING ALGORITHM

Algorithm 3 shows detailed pseudo code of the hoPS embedding
algorithm for convenience of implementation. In contrast to Al-
gorithm 1, we write it as a recursive algorithm that traverses the
pattern tree H and do not explicitly compute the OBD given by
Remark 1.

We use Python inspired notation for the hash mapsA,B. Namely,
A[x] stores a list that is indexed by integers, hence A[x][i] returns
the ith value of that list. “_” is a special symbol that is not contained
in the label set Σ, used to concatenate labels.

B ADDITIONAL PROOFS

In this section we provide the proofs of Lemma 3.3, Lemma 4.4,
Lemma 4.6, and Proposition 5.2.

Proof of Lemma 3.3. Let G = Kn be the complete graph on n
vertices and let G,H be unlabeled and |V (H)| << n. Choose D(H)
as in Remark 1. As V1 = {r }, we can draw an initial image of
φ(r) ∈ V (G) in constant time (Line 5).9 For any Vi with i > 2, the
bipartite matching instance in Line 8 can be constructed between
Vi and the uncovered vertices inN(φ(vi)) inG . The algorithm now
enumerates all maximum matchings and chooses one uniformly
at random. The best known algorithm for this subtask runs in
9 Assuming usual graph data structures. Using appropriate index structures, the same
is possible for labeled graphs.

O (|Vi | + ∆(G)) per matching [18]. Hence, according to Lemma 3.2,
Line 9 requires up toO

(
∆(G)!·(∆(G)+ |Vi |)

(∆(G)−|Vi |)!
)
time to finish. As neither

Fürer and Kasiviswanathan [3] nor Ravkic et al. [14] give any addi-
tional insight in the matching instances considered for extension
of the patterns, this is the best run time we can assume for their
algorithm. The runtime of the remaining steps is dominated by this
call. As a result, one iteration of the outer loop runs in

O
©­«

∑
Vi ∈D(H)

∆(G)!(|Vi | + ∆(G))
(∆(G) − |Vi |)!

ª®¬ = O ©­«
∑

v ∈V (H)

∆(G)!(δ (v) + ∆(G))
(∆(G) − δ (v))!

ª®¬
= O

(
∆(G) |V (H)| ∆(G)!

(∆(G) − ∆(H))!

)
.

□

Proof of Lemma 4.4. By definition of Ei in Algorithm 1 it fol-
lows that (A Û∪B,E) is a bipartite graph. Moreover, by the definition
of the tree OBD D(H) the partition A = Vi consists of the children
of some u ∈ Vj for 1 ≤ j < i . Now consider two vertices a ∈ A

and b ∈ B. If l(a) = l(b) and l(ua) = l(φi−1(u)b) then, by definition,
ab ∈ E. Hence, for a fixed pair of labels l , l ′ ∈ Σ the subgraph
induced by the vertices a ∈ Awith l(a) = l and l(ua) = l ′ and b ∈ B
with l(b) = l and l(φi−1(u)b) = l ′ is a complete bipartite graph. On
the other hand, if l(a) , l(b) or l(ua) , l(φi−1(u)b) then ab < E.
Thus (A Û∪B,E) separates into disjoint complete bipartite subgraphs
that are indexed by pairs of labels (l , l ′) ∈ Σ2. □

Proof of Lemma 4.6. Assuming that the labels of vertices and
edges of the graphs G and H come from a fixed alphabet Σ, we can
compute the disjoint blocks directly from the label information ofA
and B. Using two hash maps10,H (A) indexed by (l(a), l(φi−1(u)a) ∈
Σ × Σ (resp. H (B) indexed by (l(b), l(φi−1(u)b)) that hold a list of
vertices for each such label pair. Note that there are at most |A|
different indices in H (A). Hence, there are linearly many keys,
each of which can be accessed in constant time. To compute a
random maximummatching, we iterate over all keys. For each such
key (l(a), l(φi−1(u)a)), we obtain the subsets of A and B that are
labeled in this way. These are exactly the left and right hand side of
the complete bipartite block that corresponds to (l(a), l(φi−1(u)a)).
Hence, shuffling the larger of the two lists of vertices and assigning
vertices as described in the proof of Lemma 4.5 yields the desired
result. Hence, as hashing all (linearly many) label combinations and
iterating over them can be done in linear time, and as the subsets
stored in the hash maps as lists form a partition of A (resp. B), the
whole algorithm can be implemented to run in linear time. □

Proof of Proposition 5.2. Assume that |CH (G)| > 0, then the
theorem follows directly from Hoeffding’s inequality, using that
0 ≤ ci ≤ UH (G) and that E[Ck] = |CH (G)|, i.e.,

P
[���Ck − |CH (G)|

��� ≥ ϵ |CH (G)|
]
≤ 2 exp

(
−2kϵ2 |CH (G)|2

UH (G)

)
For |CH (G)| = 0, the output of Alg. 1 will always be zero, so the error
probability is P

[
Ck = 0

���|CH (G)| , 0
]
≤ P

[
Ck = 0

���|CH (G)| = 1
]
,

which is bounded by the error probability for ϵ = 1 and |CH (G)| = 1.
Solving for k and using Eq. 2 yields the result. □

10 Alternatively, one can implement the algorithm in-place using sorting.

	Abstract
	1 Introduction
	2 Basic Notions
	3 Approximate Counting of Subgraph Isomorphisms
	3.1 Example
	3.2 Runtime Analysis

	4 The hoPS Embedding Algorithm
	4.1 Block Disjoint Bipartite Graphs

	5 Error Bounds
	6 Experimental Evaluation
	6.1 Approximate Counting in Large Graphs
	6.2 Probabilistic Frequent Subtree Mining

	7 Conclusion
	References
	A The hoPS Embedding Algorithm
	B Additional Proofs

