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Abstract. Motivated by various binary classification problems in struc-
tured data (e.g., graphs or other relational and algebraic structures),
we investigate some algorithmic properties of closed set and half-space
separation in abstract closure systems. Assuming that the underlying
closure system is finite and given by the corresponding closure operator,
we formulate some negative and positive complexity results for these two
separation problems. In particular, we prove that deciding half-space sep-
arability in abstract closure systems is NP-complete in general. On the
other hand, for the relaxed problem of maximal closed set separation we
propose a simple greedy algorithm and show that it is efficient and has
the best possible lower bound on the number of closure operator calls.
As a second direction to overcome the negative result above, we consider
Kakutani closure systems and show first that our greedy algorithm pro-
vides an algorithmic characterization of this kind of set systems. As one
of the major potential application fields, we then focus on Kakutani clo-
sure systems over graphs and generalize a fundamental characterization
result based on the Pasch axiom to graph structure partitioning of finite
sets. Though the primary focus of this work is on the generality of the
results obtained, we experimentally demonstrate the practical usefulness
of our approach on vertex classification in different graph datasets.

Keywords: closure systems · half-space separation · binary classifica-
tion

1 Introduction

The theory of binary separation in Rd by hyperplanes goes back to at least
Rosenblatt’s pioneer work on perceptron learning in the late fifties [12]. Since
then several deep results have been published on this topic including, among
others, Vapnik and his co-workers seminal paper on support vector machines [2].
The general problem of binary separation in Rd by hyperplanes can be regarded
as follows: Given two finite sets R,B ⊆ Rd, check whether their convex hulls are
disjoint, or not. If not then return the answer “No” indicating that R and B are
not separable by a hyperplane. Otherwise, there exists a hyperplane in Rd such
that the convex hull of R lies completely in one of the two half-spaces defined by
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the hyperplane and that of B in the other one. The class of an unseen point in Rd
is then predicted by that of the training examples in the half-space it belongs
to. The correctness of this generic method for Rd is justified by the result of
Kakutani [9] that any two disjoint convex sets in Rd are always separable by a
hyperplane.

While hyperplane separation in Rd is a well-founded field, the adaptation
of the above idea to other types of data, such as graphs and other relational
and algebraic structures has received less attention by the machine learning
community. In contrast, the idea of abstract half-spaces over finite domains has
intensively been studied among others in geometry and theoretical computer
science (see, e.g., [4,5,10,15]). Using the fact that the set of all convex hulls in Rd
forms a closure system, the underlying idea of generalizing hyperplane separation
in Rd to arbitrary finite sets E is to consider some semantically meaningful
closure system C over E (see, e.g., [16] for abstract closure structures). A subset
H of E is then considered as an abstract half-space, if H and its complement both
belong to C. In this field of research there is a special focus on characterization
results of special closure systems, called Kakutani closure systems (see, e.g.,
[4,16]). This kind of closure systems satisfy the following property: If the closures
of two sets are disjoint then they are half-space separable in the closure system.

Utilizing the results of other research fields, in this work we deal with the
algorithmic aspects of half-space separation in closure systems over finite do-
mains (or ground sets) from the point of view of binary classification. In all
results presented in this paper we assume that the abstract closure system is
given implicitly via the corresponding closure operator. This assumption is jus-
tified by the fact that the cardinality of a closure system can be exponential
in that of the domain. The closure operator is regarded as an oracle (or black
box) which returns in unit time the closure of any subset of the domain. Us-
ing these assumptions, we first show that deciding whether two subsets of the
ground set are half-space separable in the underlying abstract closure system is
NP-complete.

In order to overcome this negative result, we then relax the problem setting
of half-space separation to maximal closed set1 separation. That is, to the prob-
lem of finding two closed sets in the closure system that are disjoint, contain the
two input subsets, and have no supersets in the closure system w.r.t. these two
properties. For this relaxed problem we give a simple efficient greedy algorithm
and show that it is optimal w.r.t. the number of closure operator calls in the
worst-case. As a second way to resolve the negative result mentioned above, we
then focus on Kakutani closure systems. We first show that any deterministic
algorithm deciding whether a closure system is Kakutani or not requires expo-
nentially many closure operator calls in the worst-case. Despite this negative
result, Kakutani closure systems remain highly interesting for our purpose be-
cause there are various closure systems which are known to be Kakutani. We
also prove that the greedy algorithm mentioned above provides an algorithmic

1 Throughout this work we consistently use the nomenclature “closed sets” by noting
that “convex” and “closed” are synonyms by the standard terminology of this field.
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characterization of Kakutani closure systems. This implies that for these systems
the output is always a partitioning of the domain into two half-spaces containing
the closures of the input sets if and only if their closures are disjoint.

Regarding potential applications of maximal closed set and half-space sepa-
rations, we then turn our attention to graphs.2 Using the notion of convexity for
graphs induced by shortest paths [6], we generalize a fundamental characteriza-
tion result of Kakutani closure systems based on the Pasch axiom [4] to graph
structured partitioning of finite sets. Potential practical applications of this gen-
eralization result include e.g. graph clustering and partitioning or mining logical
formulas over graphs.

Besides the positive and negative theoretical results, we also present exten-
sive experimental results for binary vertex classification in graphs, by stressing
that our generic approach is not restricted to graphs. In the experiments we
first consider trees and then arbitrary graphs. Regarding trees, the closure sys-
tems considered are always Kakutani. Our results clearly demonstrate that a
remarkable predictive accuracy can be obtained even for such cases where the
two sets of vertices corresponding to the two classes do not form half-spaces in
the closure systems. Since the closure systems considered over arbitrary graphs
are not necessarily Kakutani, the case of vertex classification in arbitrary graphs
is reduced to that in trees as follows: Consider a set of random spanning trees of
the graph at hand and predict the vertex labels by the majority vote of the pre-
dictions in the spanning trees. Our experimental results show that this heuristic
results in considerable predictive performance on sparse graphs. We emphasize
that we deliberately have not exploited any domain specific properties in the
experiments, as our primary goal was to study the predictive performance of
our general purpose algorithm. We therefore also have not compared our results
with those of the state-of-the-art domain specific algorithms.

The rest of the paper is organized as follows. In Section 2 we collect the neces-
sary notions and fix the notation. Section 3 is concerned with the negative result
on the complexity of the half-space separation problem and with the relaxed
problem of maximal closed set separation. Section 4 is devoted to Kakutani and
Section 5 to non-Kakutani closure systems. Finally, in Section 6 we conclude
and formulate some open problems. Due to space limitations we omit the proofs
from this short version.

2 Preliminaries

In this section we collect the necessary notions and notation for set and closure
systems (see, e.g., [4,16] for references on closure systems and separation axioms).

For a set E, 2E denotes the power set of E. A set system over a ground
set E is a pair (E, C) with C ⊆ 2E ; (E, C) is a closure system if it fulfills the
following properties: ∅, E ∈ C and X ∩ Y ∈ C holds for all X,Y ∈ C. The reason

2 An entirely different application to binary classification in distributive lattices with
applications to inductive logic programming and formal concept analysis is discussed
in the long version of this paper.
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of requiring ∅ ∈ C is discussed below. Throughout this paper by closure systems
we always mean closure systems over finite ground sets (i.e., |E| < ∞). It is a
well-known fact that any closure system can be defined by a closure operator,
i.e., a function ρ : 2E → 2E satisfying for all X,Y ⊆ E: X ⊆ ρ(X) (extensivity),
ρ(X) ⊆ ρ(Y ) whenever X ⊆ Y (monotonicity), ρ(ρ(X)) = ρ(X) (idempotency).

For a closure operator ρ over E with ρ(∅) = ∅ the corresponding closure
system, denoted (E, Cρ), is defined by its fixed points, i.e., Cρ = {X ⊆ E :
ρ(X) = X}. Conversely, for a closure system (E, Cρ), the corresponding closure
operator ρ is defined by ρ(X) =

⋂
{C : X ⊆ C ∧ C ∈ C} for all X ⊆ E.

Depending on the context we sometimes omit the underlying closure operator
from the notation and denote the closure system at hand by (E, C). The elements
of Cρ of a closure system (E, Cρ) will be referred to as closed or convex sets.

As an example, for any finite set E ⊂ Rd, the set system (E, C) with C =
{conv(X) ∩ E : X ⊆ E} forms a closure system, where conv(X) denotes the
convex hull of X in Rd. Note that in contrast to convexity in Rd, Cρ is not
atomic in general, i.e., singletons are not necessarily closed.

We now turn to the generalization of binary separation in Rd by hyperplanes
to that in abstract closure systems by half-spaces (cf. [16] for a detailed intro-
duction into this topic). In the context of machine learning, one of the most
relevant questions concerning a closure system (E, C) is whether two subsets of
E are separable in C, or not. To state the formal problem definition, we follow
the generalization of half-spaces in Euclidean spaces to closure systems from [4].
More precisely, let (E, C) be a closure system. Then H ⊆ E is called a half-space
in C if both H and its complement, denoted Hc, are closed (i.e., H,Hc ∈ C).
Note that Hc is also a half-space by definition. Two sets A,B ⊆ E are half-space
separable if there is a half-space H ∈ C such that A ⊆ H and B ⊆ Hc; H and
Hc together form a half-space separation of A and B. Since we are interested
in half-space separations, in the definition of closure systems above we require
∅ ∈ C, as otherwise there are no half-spaces in C. The following property will be
used many times in what follows:

Proposition 1. Let (E, Cρ) be a closure system, H ∈ C a half-space, and A,B ⊆
E. Then H and Hc are a half-space separation of A and B if and only if they
form a half-space separation of ρ(A) and ρ(B).

Notice that the above generalization does not preserve all natural properties
of half-space separability in Rd. For example, for any two finite subsets of Rd
it always holds that they are half-space separable if and only if their convex
hulls3 are disjoint. In contrast, this property does not hold for finite closure
systems in general. To see this, consider the closure system ({1, 2, 3}, C) with C =
{∅, {1}, {2}, {1, 2}, {1, 2, 3}}. Note that C is non-atomic, as {3} 6∈ C. Although
{1} and {2} are both closed and disjoint, they cannot be separated by a half-
space in C because the only half-space containing {1} contains also {2}.
3 Notice that the function mapping any subset of Rd to its convex hull is a closure

operator.
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3 Half-Space and Maximal Closed Set Separation

Our goal in this work is to investigate the algorithmic aspects of half-space and
closed set separations in abstract closure systems. That is, given two subsets A,B
of the ground set, we require the algorithm to return a half-space separation of A
and B in C, if such a half-separation exists; o/w the answer “No”. As mentioned
above, two finite subsets in Rd can always be separated by a hyperplane if and
only if their convex hulls are disjoint. Thus, to decide if two finite subsets of Rd
are separable by a hyperplane, it suffices to check whether their convex hulls are
disjoint, or not. As shown above, the situation is different for abstract closure
systems because the disjointness of the closures of A and B does not imply
their half-space separability in C. This difference makes, among others, our more
general problem setting computationally difficult, as shown in Theorem 3 below.
Similarly to the infinite closure system over Rd defined by the family of all convex
hulls in Rd, we also assume that the (abstract) closure system is given implicitly
via the closure operator. This is a natural assumption, as the cardinality of the
closure system is typically exponential in that of the ground set.

3.1 Half-Space Separation

In this section we formulate some results concerning the computational com-
plexity of the following decision problem:

Half-Space Separation (HSS) Problem: Given (i) a closure system (E, Cρ)
with |E| <∞, where Cρ is given by the closure operator ρ which returns in
unit time for any X ⊆ E the closure ρ(X) ∈ Cρ and (ii) subsets A,B ⊆ E,
decide whether A and B are half-space separable in Cρ, or not.

Clearly, the answer is always “No” whenever ρ(A)∩ρ(B) 6= ∅, as ρ(A) (resp.
ρ(B)) are the smallest closed sets in C containing A (resp. B). The fact that
the disjointness of ρ(A) and ρ(B) does not imply the half-space separability of
A and B makes the HSS problem computationally intractable. To prove this
negative result, we adopt the definition of convex vertex sets of a graph defined
by shortest paths [6]. More precisely, for an undirected graph G = (V,E) we
consider the set system (V, Cγ) with

V ′ ∈ Cγ ⇐⇒ ∀u, v ∈ V ′,∀P ∈ Su,v : V (P ) ⊆ V ′ (1)

for all V ′ ⊆ V , where Su,v denotes the set of shortest paths connecting u and v
in G and V (P ) the set of vertices in P . Notice that (V, Cγ) is a closure system;
this follows directly from the fact that the intersection of any two convex subsets
of V is also convex, by noting that the empty set is also convex by definition.
Using the above definition of graph convexity, we consider the following problem
definition [1]:

Convex 2-Partitioning Problem: Given an undirected graph G = (V,E),
decide whether there is a proper partitioning of V into two convex sets.
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Notice that the condition on properness is necessary, as otherwise ∅ and V would
always form a (trivial) solution. Note also the difference between the HSS and
the Convex 2-Partitioning problems that the latter one is concerned with a
property of G (i.e., has no additional input A,B). For the problem above, the
following negative result has been shown in [1]:

Theorem 2. The Convex 2-Partitioning problem is NP-complete.

Using the above concepts and result, we are ready to state the main negative
result for this section, by noting that its proof is based on a reduction from the
Convex 2-Partitioning problem.

Theorem 3. The HSS problem is NP-complete.

Furthermore, we can ask for the input (E, Cρ), A,B of the HSS problem
if there exist disjoint closed sets H1, H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2 of
maximum combined cardinality (i.e., there are no disjoint closed sets H ′

1, H
′
2 ∈ Cρ

with A ⊆ H ′
1 and B ⊆ H ′

2 such that |H1|+ |H2| < |H ′
1|+ |H ′

2|). More precisely,
we are interested in the following problem:

Maximum Closed Set Separation Problem: Given (i) a closure system (E, Cρ)
as in the HSS problem definition, (ii) subsets A,B ⊆ E, and (iii) an inte-
ger k > 0, decide whether there are disjoint closed sets H1, H2 ∈ Cρ with
A ⊆ H1, B ⊆ H2 such that |H1|+ |H2| ≥ k.

Corollary 4 below is an immediate implication of Theorem 3.

Corollary 4. The Maximum Closed Set Separation problem is NP-complete.

The negative results above motivate us to relax below the HSS and the
Maximum Closed Set Separation problems.

3.2 Maximal Closed Set Separation

One way to overcome the negative results formulated in Theorem 3 and Corol-
lary 4 is to relax the condition on half-space separability in the HSS problem to
the problem of maximal closed set separation:

Maximal Closed Set Separation (MCSS) Problem: Given (i) a closure
system (E, Cρ) as in the HSS problem definition, (ii) subsets A,B ⊆ E, find
two disjoint closed sets H1, H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2, such that
there are no disjoint sets H ′

1, H
′
2 ∈ Cρ with H1 ( H ′

1 and H2 ( H ′
2, or return

“NO” if such sets do not exist.

In this section we present Alg. 1, that solves the MCSS problem and is
optimal w.r.t. the worst-case number of closure operator calls. Alg. 1 takes as
input a closure system (E, Cρ) over some finite ground set E, where Cρ is given
via the closure operator ρ, and subsets A,B of E. If the closures of A and B
are not disjoint, then it returns “NO” (cf. Lines 1–3). Otherwise, the algorithm
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Algorithm 1: Maximal Closed Set Separation (MCSS)

Input: finite closure system (E, Cρ) given by a closure operator ρ and
A,B ⊆ E

Output: maximal disjoint closed sets H1, H2 ∈ Cρ with A ⊆ H1 and B ⊆ H2

if ρ(A) ∩ ρ(B) = ∅; “No” o/w

1 H1 ← ρ(A), H2 ← ρ(B)
2 if H1 ∩H2 6= ∅ then
3 return “No”
4 end
5 F ← E \ (H1 ∪H2)
6 while F 6= ∅ do
7 choose e ∈ F and remove it from F
8 if ρ(H1 ∪ {e}) ∩H2 = ∅ then
9 H1 ← ρ(H1 ∪ {e}), F ← F \H1

10 else if ρ(H2 ∪ {e}) ∩H1 = ∅ then
11 H2 ← ρ(H2 ∪ {e}), F ← F \H2

12 end

13 end
14 return H1, H2

tries to extend one of the largest closed sets H1 ⊇ A and H2 ⊇ B found so far
consistently by an element e ∈ F , where F = E \(H1∪H2) is the set of potential
generators. By consistency we mean that the closure of the extended set must
be disjoint with the (unextended) other one (cf. Lines 8 and 10). Note that each
element will be considered at most once for extension (cf. Line 5). If H1 or H2

could be extended, then F will be correspondingly updated (cf. Lines 9 and 11),
by noting that e will be removed from F even in the case it does not result in an
extension (cf. Line 5). The algorithm repeatedly iterates the above steps until F
becomes empty; at this stage it returns H1 and H2 as a solution. We have the
following result for Alg. 1:

Theorem 5. Alg. 1 is correct and solves the MCSS problem by calling the clo-
sure operator at most 2|E| − 2 times.

To state the optimality of Alg. 1 w.r.t. the number of closure operator calls
in Corollary 7 below, we first state the following result.

Theorem 6. There exists no deterministic algorithm solving the MCSS problem
calling the closure operator less than 2|E| − 2 times in the worst-case.

The following corollary is immediate from Theorems 5 and 6.

Corollary 7. Alg. 1 is optimal w.r.t. the worst-case number of closure operator
calls.

In Section 4 we consider Kakutani closure systems, a special kind of closure
systems, for which Alg. 1 solves the HSS problem correctly and efficiently.
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4 Kakutani Closure Systems

A natural way to overcome the negative result stated in Theorem 3 is to consider
closure systems in which any two disjoint closed sets are half-space separable.
More precisely, for a closure operator ρ over a ground set E, the corresponding
closure system (E, Cρ) is Kakutani 4 if it fulfills the S4 separation axiom 5 defined
as follows: For all A,B ⊆ E, A and B are half-space separable in (E, Cρ) if and
only if ρ(A) ∩ ρ(B) = ∅. By Proposition 1, any half-space separation of A,B in
Cρ is a half-space separation of ρ(A) and ρ(B) in Cρ. We recall that all closure
systems (E, C) considered in this work are finite (i.e., |E| < ∞). Clearly, the
HSS problem can be decided in linear time for Kakutani closure systems: For
any A,B ⊆ E just calculate ρ(A) and ρ(B) and check whether they are disjoint,
or not.

The following theorem, one of our main results in this paper, claims that
Alg. 1 solving the MCSS problem provides also an algorithmic characterization
of Kakutani closure systems.

Theorem 8. Let (E, Cρ) be a closure system with corresponding closure operator
ρ. Then (E, Cρ) is Kakutani if and only if for all A,B ⊆ E with ρ(A)∩ρ(B) = ∅,
the output of Algorithm 1 is a partitioning of E.

The characterization result formulated in Theorem 8 cannot, however, be
used to decide in time polynomial in |E|, whether a closure system (E, Cρ) is
Kakutani, or not if it is given by ρ. More precisely, in Theorem 9 below we have
a negative result for the following problem:

Kakutani Problem: Given a closure system (E, Cρ), where Cρ is given inten-
sionally via ρ, decide whether (E, Cρ) is Kakutani, or not.

Theorem 9. Any deterministic algorithm solving the Kakutani problem above
requires Ω

(
2|E|/2) closure operator calls.

While the exponential lower bound in Theorem 9 holds for arbitrary (finite)
closure systems, fortunately there is a broad class of closure systems that are
known to be Kakutani. In particular, as a generic application field of Kakutani
closure systems, in Section 4.1 we focus on graphs. We first present a generaliza-
tion of a fundamental result [4,5] characterizing Kakutani closure systems over
graphs by means of the Pasch axiom and mention some potential applications of
this generalization result.

4.1 Kakutani Closure Systems over Graphs

As a generic application field of Kakutani closure systems, in this section we
focus our attention on graphs. For a graph G = (V,E), we consider the clo-
sure system (V, Cγ) defined in (1). The following fundamental result provides a
characterization of Kakutani closure systems over graphs.

4 A similar property was considered by the Japanese mathematician Shizou Kakutani
for Euclidean spaces (cf. [9])

5 For a good reference on convexity structures satisfying the S4 separation property,
the reader is referred e.g. to [4].
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Theorem 10. [4,5] Let G = (V,E) be a graph. Then (V, Cγ) defined in (1) is
Kakutani if and only if γ fulfills the Pasch axiom, i.e.,

x ∈ γ({u, v}) ∧ y ∈ γ({u,w}) implies γ({x,w}) ∩ γ({y, v}) 6= ∅

for all u, v, w, x, y ∈ V .

The theorem below is an application of Theorem 10 to trees6:

Theorem 11. Let G = (V,E) be a tree. Then (V, Cγ) defined in (1) is Kakutani.

Besides the direct application of Theorem 11 to vertex classification in trees, it
provides also a natural heuristic for vertex classification in arbitrary graphs; we
discuss this heuristic together with an empirical evaluation in Section 5.

Remark 12. We note that the converse of Theorem 11 does not hold. Indeed, let
G = (V,E) be a graph consisting of a single cycle. One can easily check that the
corresponding closure system (V, Cγ) defined in (1) is Kakutani, though G is not
a tree.

Motivated by potential theoretical and practical applications, in Theorem 13
below we generalize Theorem 10 to a certain type of structured set systems.
More precisely, a graph structure partitioning (GSP) is a triple G = (S,G,P),
where S is a finite set, G = (V,E) is a graph, and P = {bag(v) ⊆ S : v ∈ V }
is a partitioning of S into |V | non-empty subsets (i.e.,

⋃
v∈V bag(v) = S and

bag(u)∩ bag(v) = ∅ for all u, v ∈ V with u 6= v). The set bag(v) associated with
v ∈ V is referred to as the bag of v.

For a GSP G = (S,G,P) with G = (V,E), let σ : 2S → 2S be defined by

σ : S′ 7→
⋃
v∈V ′

bag(v) (2)

with
V ′ = γ({v ∈ V : bag(v) ∩ S′ 6= ∅})

for all S′ ⊆ S, where γ is the closure operator corresponding to (V, Cγ) defined
in (1). That is, take first the closure V ′ ⊆ V of the set of vertices of G that
are associated with a bag having a non-empty intersection with S′ and then the
union of the bags for the nodes in V ′. We have the following result for σ.

Theorem 13. Let G = (S,G,P) be a GSP with G = (V,E). Then σ defined in
(2) is a closure operator on S. Furthermore, the corresponding closure system
(S, Cσ) is Kakutani whenever γ corresponding to (V, Cγ) fulfills the Pasch axiom
on G.

Clearly, Theorem 13 generalizes the result formulated in Theorem 10, as any
graph G = (V,E) can be regarded as the (trivial) GSP G = (V,G,P), where
all blocks in P are singletons with bag(v) = {v} for all v ∈ V . Theorem 13 has

6 The claim holds for outerplanar graphs as well. For the sake of simplicity we formu-
late it in this short version for trees only, as it suffices for our purpose.
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several potential applications to graphs with vertices associated with the blocks
of a partitioning of some set in a bijective manner. This kind of graphs can be
obtained for example from graph clustering (see, e.g., [13]) or graph partitioning
(see, e.g., [3]) that play an important role e.g. in community network mining.

Another application of Theorem 13 may arise from quotient graphs; a graph
G = (V,E) is a quotient graph of a graph G′ = (V ′, E′) if V is formed by the
equivalence classes of V ′ with respect to some equivalence relation ρ (i.e., V =
V ′/ρ) and for all x, y ∈ V , {x, y} ∈ E if and only if x = [u]ρ, y = [v]ρ for some
u, v ∈ V ′ with {u, v} ∈ E′, where [u]ρ (resp. [v]ρ) denotes the equivalence class
of u (resp. v). Such a quotient graph can be regarded as a GSP G = (V ′, G,P),
where P is the partitioning of V ′ corresponding to the equivalence relation ρ
and for all v ∈ V , bag(v) = [v′]ρ if v = [v′]ρ for some v′ ∈ V ′. Quotient graphs
play an important role in logic based graph mining7 (see, e.g., [14]), which, in
turn, can be regarded as a subfield of inductive logic programming (ILP). More
precisely, regarding a graph G′ = (V ′, E′) as a first-order goal clause CG′ (see,
e.g., [14]), in ILP one may be interested in finding a subgraph G of G′, such
that CG′ logically implies the first-order goal clause CG representing G and
G is of minimum size with respect to this property. In ILP, CG is referred to
as a reduced clause (see [11] for further details on clause reduction); in graph
theory G is called the core of G′. By the characterization result of subsumptions
between clauses in [7], logical implication is equivalent to graph homomorphism
for the case considered. Thus, G can be considered as the quotient graph of G′

induced by ϕ, where all vertices v ∈ V are associated with the equivalence class
[v] = {u ∈ V ′ : ϕ(u) = v}; the vertices of G′ in [v] are regarded structurally
equivalent with respect to homomorphism. Note that G is a tree structure of G′

whenever G′ is a tree, allowing for the same heuristic discussed in Section 5 for
arbitrary GSPs.

4.2 Experimental Results

In this section we empirically demonstrate the potential of Alg. 1 on predictive
problems over Kakutani closure systems. For this purpose we consider the bi-
nary vertex classification problem over free trees. We stress that our main goal
with these experiments is to demonstrate that a remarkable predictive perfor-
mance can be obtained already with the very general version of our algorithm
as described in Alg. 1 and with its modification for the case that the closures of
the input two sets are not disjoint. The latter case can occur when the sets of
vertices belonging to the same class are not half-spaces. Since we do not utilize
any domain specific features in our experiments (e.g., some strategy for selecting

7 While in ordinary graph mining the pattern matching is typically defined by sub-
graph isomorphism, it is the graph homomorphism in logic based graph mining, as
subsumption between first-order clauses reduces to homomorphism between graphs
(see [8] for a discussion).
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non-redundant training examples8), we do not compare our generic approach to
the state-of-the-art algorithms specific to the vertex classification problem.

We evaluate our algorithm on synthetic tree datasets with binary labeled
vertices (see below for the details). Formally, for a closure system (E, Cρ) let
Lr and Lb form a partitioning of E, where the elements of Lr (resp. Lb) will
be referred to as red (resp. blue) vertices. We consider the following supervised
learning task: Given a training set D = R ∪ B with R ⊆ Lr, B ⊆ Lb for some
unknown partitioning Lr, Lb of E and an element e ∈ E, predict whether e ∈ Lr
or e ∈ Lb. Depending on whether or not Lr (and hence, Lb) forms a half-space
in (E, Cρ), we consider the following two cases in our experiments:

(i) If Lr (and hence, Lb) is a half-space, then ρ(R) and ρ(B) are always disjoint
and hence the algorithm returns some half-spaces Hr, Hb ∈ (E, Cρ) with
R ⊆ Hr and B ⊆ Hb because (E, Cρ) is Kakutani. The class of e is then
predicted by blue if e ∈ Hb; o/w by red. Note that Hr and Hb can be
different from Lr and Lb, respectively.

(ii) If Lr (and hence, Lb) is not a half-space in (E, Cρ) then ρ(R) ∩ ρ(B) can be
non-empty. In case of ρ(R) ∩ ρ(B) = ∅, we run Alg. 1 in its original form;
by the Kakutani property it always returns two half-spaces Hr and Hb with
R ⊆ Hr and B ⊆ Hb. The class of e is then predicted in the same way
as described in (i). Otherwise (i.e., ρ(R) ∩ ρ(B) 6= ∅), we greedily select a
maximal subtree T ′ such that its vertices have not been considered so far
and the closures of the red and blue training examples in T ′ are disjoint in
the closure system corresponding to T ′; note that this is also Kakutani.9 We
then run Alg. 1 on this closure system and predict the class of the unlabeled
vertices of T ′ by the output half-spaces as above. We apply this algorithm
iteratively until all vertices have been processed.

For the empirical evaluation of the predictive performance of Alg. 1 and
its variant described in (ii) above, we used the following synthetic datasets D1
and D2:

D1 For case (i) we considered random trees of size 100, 200, . . . , 1000, 2000, . . . , 5000
(see the x-axes of Fig. 1). For each tree size we then generated 50 random
trees and partitioned the vertex set (i.e., E) of each tree into Lr and Lb such

that Lr and Lb are half-spaces in (E, Cρ) and satisfy 1
3 ≤

|Lr|
|Lb| ≤ 3.

D2 For case (ii) we proceeded similarly except for the requirement that Lr, Lb
are half-spaces. Instead, the labels partition the tree into around 10 maximal
subtrees, each of homogeneous labels.

For all trees in D1 and D2 we generated 20 random training sets of different
cardinalities (see the y-axes in Fig. 1 and 2). In this way we obtained 1000

8 In case of trees, such a non-redundant set could be obtained by considering only
leaves as training examples.

9 We formulate this heuristic for trees for simplicity. In the long version we show that
this idea can be generalized to any graph satisfying the Pasch axiom.
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Fig. 1: Accuracy of vertex classifications where labels are half-spaces (cf.
dataset D1).
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Fig. 2: Accuracy of vertex classification where labels are not half-spaces and par-
tition the tree into around 10 subtrees, each of homogeneous labels (cf. dataset
D2).

learning tasks (50 trees × 20 random training sets) for each tree size (x-axes)
and training set cardinality (y-axes).

The results are presented in Fig. 1 for D1 and in Fig. 2 for D2. For each tree
size (x-axes) and training set cardinality (y-axes) we plot the average accuracy
obtained for the 1000 learning settings considered. The accuracy is calculated in
the standard way, i.e., for a partitioning Hr, Hb of E returned by the algorithm
it is defined by

|{e ∈ E \D : e is correctly classified}|
|E \D|

,

where D denotes the training set.

Regarding D1 (Fig. 1) one can observe that a remarkable average accuracy
over 80% can be obtained already for 40 training examples even for trees of
size 1000. This corresponds to a relative size of 2.5% (see the LHS of Fig. 1).
With increasing tree size, the relative size of the training set reduces to 2%,
as we obtain a similar average accuracy already for 100 training examples for
trees of size 5000 (see the RHS of Fig. 1). The explanation of these surprisingly
considerable results raise some interesting theoretical questions for probabilistic
combinatorics, as the output half-spaces can be inconsistent with the partitioning
formed by Lr, Lb.
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Regarding D2 (Fig. 2), we need about 10% training examples to achieve an
accuracy of at least 80%, and for trees having at least 600 vertices (see the LHS
of Fig. 2). With increasing tree size, the relative amount of training examples
decreases to obtain a similar accuracy. In particular, for trees of size 5000, already
150 training examples (i.e., 3%) suffice to achieve 80% accuracy (see the RHS
of Fig. 2), indicating that the simple heuristic described in (ii) performs quite
well on larger trees. Our further experimental results not presented in this short
version suggest that the relative size of the training data depends sublinearly on
the number of label homogeneous subtrees.

5 Non-Kakutani Closure Systems

After the discussion of Kakutani closure systems including the negative result
on the Kakutani problem, in this section we consider non-Kakutani closure
systems and show how to extend some of the results of the previous section to
this kind of set systems. In particular, we first consider arbitrary graphs, which
are non-Kakutani, as they do not fulfill the Pasch axiom in general (cf. Thm. 10).
As a second type of non-Kakutani closure systems, we then consider finite point
configurations in Rd. Although none of these two types of closure systems are
Kakutani in general, the experimental results presented in this section show that
Alg. 1, combined with a natural heuristic in case of graphs, can effectively be
applied to both cases.

The natural heuristic mentioned above reduces the vertex classification prob-
lem in non-Kakutani closure systems over arbitrary graphs to Kakutani closure
systems by considering random spanning trees of the underlying graph. More
precisely, given a graph G = (V,E) and training sets R ⊆ Lr and B ⊆ Lb, where
Lr and Lb form an unknown partitioning of V , we proceed as follows:

1. we pick a set of spanning trees, each uniformly at random,
2. apply (ii) from Sect. 4.2 to each spanning tree generated with input R and
B, and

3. predict the class of an unlabeled vertex by the majority vote of the vertex
classification obtained for the spanning trees.

5.1 Experimental Results

Similarly to Section 4.2 on Kakutani closure systems, in this section we em-
pirically demonstrate the potential of Alg. 1 on predictive problems over non-
Kakutani closure systems. We first consider the binary vertex classification prob-
lem over arbitrary graphs and then over finite point sets in Rd. Similarly to the
case of Kakutani closure systems, we do not utilize any domain specific features,
as our focus is on measuring the predictive performance of a general-purpose al-
gorithm. In particular, in case of point configurations in Rd we use only convex
hulls (the underlying closure operator), and no other information (e.g. distances).
For the empirical evaluations on graphs and on finite point sets in Rd we used
the following synthetic datasets D3 and D4, respectively:
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D3 We generated random connected graphs of size 500, 1000, 1500, 2000 and edge
density (i.e., #edges/#vertices) 1, 1.2, . . . , 3. In particular, for each graph
size and for each edge density value, 50 random graphs have been picked.
We partitioned the vertex set of each graph via that of a random spanning
tree into random half-spaces Lr and Lb w.r.t. to the tree’s Kakutani clo-
sure system. For all labelled graphs generated, the ratio of the vertex labels

satisfies 1
3 ≤

|Lr|
|Lb| ≤ 3.

D4 We considered randomly generated finite point sets in Rd for d = 2, 3, 4 with
labels distributing around two centers. For every d = 2, 3, 4, we generated
100 different point sets in Rd, each of cardinality 1000.

For all graphs in D3 we generated 20 random training sets with 10% of
the size of the graphs. The results are presented in Fig. 3. For each number of
random spanning tree generated, edge density, and graph size (x-axes) we plot
the average accuracy obtained for the 1000 learning settings considered (i.e., 50
graphs × 20 training datasets). The accuracy is calculated in the same way as
above (cf. Sec. 4.2).

In Fig. 3a we first investigate the predictive accuracy depends on the number
of random spanning trees. One can see that classification via majority vote of
around 100 random spanning trees remarkably increases the accuracy over less
random spanning trees from 65% to 75%, while considering up to 500 spanning
trees has almost no further effect on it. As a trade-off between accuracy and run-
time we have therefore fixed the number of spanning trees to (the odd number)
101 for the other experiments.

The results concerning edge densities are presented in Fig. 3b. As expected,
the edge density has an important effect on the accuracy ranging from 90%
for edge density 1 (i.e., trees) to 65% for edge density 3. Notice that for edge
density 3, the results are very close to the default value, indicating that our
general approach has its remarkable performance on very sparse graphs only. (We
recall that except for the closure operator, our algorithm is entirely uninformed
regarding the structure.)

Finally, the graph size appears to have no significant effect on the predictive
performance, as shown in Fig. 3c. For the edge density of 1.2, the accuracy is
consistently around 75% for graphs with 500 nodes up to 2000. This is another
important positive feature of our algorithm.

For each classification task for finite point sets in Rd we considered random
training sets of different cardinalities for D4 and applied Alg. 1 with the convex
hull operator in Rd to these training data. The prediction has been made by the
algorithm’s output consisting of two maximal disjoint closed sets. (Note that
they are not necessarily half-spaces because the closure system is not Kakutani
in general). Accordingly, some of the points have not been classified. To evaluate
our approach, we calculated the precision and recall for each problem setting.
The results are reported in Fig. 4. Fig. 4a shows that the cardinality of the
training set has a significant effect on the accuracy, ranging from 70% to 98%
for 10 (i.e., 1%) to 100 (i.e., 10%) training examples, respectively. Note that for
small training sets, the precision is very sensitive to the dimension. In particular,
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Fig. 3: Vertex classification in graphs
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Fig. 4: Classification in finite point sets

the difference is more than 10% for 10 training examples. However, the difference
vanishes with increasing training set size. We have carried out experiments with
larger datasets as well; the results not presented here for space limitations clearly
indicate that the precision remains quite stable w.r.t. the size of the point set.
For example, for a training set size of 40, it was consistently around 94% for
different cardinalities. Regarding the recall (cf. Fig. 4b), it was at least 90% in
most of the cases by noting that it shows a similar sensitivity to the size of the
training data as the precision.

In summary, our experimental results reported in this section clearly demon-
strate that surprisingly considerable predictive performance can be obtained
with Alg. 1 even for non-Kakutani closure systems.

6 Concluding Remarks

The results of this paper show that despite several theoretical difficulties, im-
pressive predictive accuracy can be obtained by a simple greedy algorithm for
binary classification problems over abstract closure systems. This is somewhat
surprising because the only information about the “nature” of the data has been
encoded in the underlying closure operator.
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Our approach raises a number of interesting theoretical, algorithmic, and
practical questions. In particular, in this paper we deliberately have not utilized
any domain specific knowledge (and accordingly, not compared our results to any
state-of-the-art algorithm specific to some structure). It would be interesting to
specialize Alg. 1 to some particular problem by enriching it with additional
information and compare only then its predictive performance to some specific
method.

For the theoretical and algorithmic issues, we note that it would be inter-
esting to study the relaxed notion of almost Kakutani closure systems, i.e., in
which the combined size of the output closed sets are close to the cardinality of
the ground set. Another interesting problem is to study algorithms solving the
HSS and MCSS problems for closure systems, for which an upper bound on the
VC-dimension is known in advance. The relevance of the VC-dimension in this
context is that for any closed set C ∈ Cρ of a closure system (E, Cρ) there exists a
set G ⊆ E with |G| ≤ d such that ρ(G) = C, where d is the VC-dimension of Cρ
(see, e.g., [8]). It is an interesting question whether the lower bound on the num-
ber of closure operator calls can be characterized in terms of the VC-dimension
of the underlying closure system.
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