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Abstract

Entity Matching (EM) aims at recognizing en-
tity records that denote the same real-world ob-
ject. Neural EM models learn vector represen-
tation of entity descriptions and match entities
end-to-end. Though robust, these methods re-
quire many annotated resources for training,
and lack of interpretability. In this paper, we
propose a novel EM framework that consists of
Heterogeneous Information Fusion (HIF) and
Key Attribute Tree (KAT) Induction to decou-
ple feature representation from matching deci-
sion. Using self-supervised learning and mask
mechanism in pre-trained language modeling,
HIF learns the embeddings of noisy attribute
values by inter-attribute attention with unla-
beled data. Using a set of comparison fea-
tures and a limited amount of annotated data,
KAT Induction learns an efficient decision tree
that can be interpreted by generating entity
matching rules whose structure is advocated
by domain experts. Experiments on 6 pub-
lic datasets and 3 industrial datasets show that
our method is highly efficient and outperforms
SOTA EM models in most cases. Our codes
and datasets can be obtained from https://

github.com/THU-KEG/HIF-KAT.

1 Introduction

Entity Matching (EM) aims at identifying whether
two records from different sources refer to the same
real-world entity. This is a fundamental research
task in knowledge graph integration (Dong et al.,
2014; Daniel et al., 2020; Christophides et al., 2015;
Christen, 2012) and text mining (Zhao et al., 2014).
In real applications, it is not easy to decide whether
two records with ad hoc linguistic descriptions refer
to the same entity. In Figure 1, e2 and e3 refer to
the same publication, while e1 refers to a different
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Figure 1: Published papers as entity records.

one. Venues of e2 and e3 have different expressions;
Authors of e3 is misplaced in its Title field.

Early works include feature engineering (Wang
et al., 2011) and rule matching (Singh et al., 2017;
Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
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pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
interpretable EM rules in the sense that they meet
the criteria by domain experts (Fan et al., 2009).

To address the two limitations, we propose a
novel EM framework to decouple feature represen-
tation from matching decision. Our framework con-
sists of Heterogeneous Information Fusion (HIF)
and Key Attribute Tree (KAT) Matching Decision
for low-resource settings. HIF is robust for feature
representation from noisy inputs, and KAT carries
out interpretable decisions for entity matching.

In particular, HIF learns from unlabeled data a
mapping function, which converts each noisy at-
tribute value of entity into a vector representation.
This is carried out by a novel self-supervised at-
tention training schema to leverage the redundancy
within attribute values and propagate information
across attributes.

KAT Matching Decision learns KAT using deci-
sion tree classification. After training, KAT carries
out entity matching as a task of the classification
tree. For each entity pair, it first computes multiple
similarity scores for each attribute using a family
of metrics and concatenates them into a compari-
son feature vector. This classification tree can be
directly interpreted as EM rules that share a similar
structure with EM rules derived by domain experts.

Our EM method achieves at least SOTA perfor-
mance on 9 datasets (3 structured datasets, 3 dirty
datasets, and 3 industrial datasets) under various
extremely low-resource settings. Moreover, when
the number of labeled training data decreases from
60% to 10%, our method achieves almost the same
performance. In contrast, other methods’ perfor-
mances decrease greatly.

The rest of the paper is structured as follows.
Section 2 defines the EM task; Section 3 presents
HIF and KAT-Induction in details; Section 4 reports
a series of comparative experiments that show the
robustness and the interpretability our methods in
low-resource settings; Section 5 lists some related
works; Section 6 concludes the paper.

2 Task Definitions

Entity Matching. Let T1 and T2 be two collec-
tions of entity records with m aligned attributes
{A1, · · · Am}. We denote the ith attribute val-

ues of entity record e as e[Ai]. Entity match-
ing aims to determine whether e1 and e2 refer to
the same real-world object or not. Formally, en-
tity matching is viewed as a binary classification
function T1 × T2 → {True, False} that takes
(e1, e2) ∈ T1 × T2 as input, and outputs True
(False), if e1 and e2 are matched (not matched).

Current neural EM approaches simultaneously
embed entities in low-dimensional vector spaces
and obtain entity matching by computations on
their vector representations. Supervised deep learn-
ing EM relies on large amounts of labeled training
data, which is time-consuming and needs costly
manual efforts. Large unlabelled data also contain
entity feature information useful for EM, yet has
not been fully exploited by the existing neural EM
methods. In this paper, we aim at decoupling fea-
ture representation from matching decision. Our
novel EM model consists of two sub-tasks: learn-
ing feature representation from unlabeled data and
EM decision making.

Feature Representation from Noisy Inputs.
Entity records are gathered from different sources
with three typical noises in attribute values: mis-
placing, missing, or synonym. Misplacing means
that attribute value of Ai drifts to Aj(i 6= j); miss-
ing means that attribute values are empty; synonym
means that attribute values with the same mean-
ing have different literal forms. Our first task is to
fusion noisy heterogeneous information in a self-
supervised manner with unlabelled data.

Interpretable EM. Domain experts have some
valuable specifications on EM rules as follow: (1)
an EM rule is an if-then rule of feature comparison;
(2) it only selects a part of key attributes from all
entity attributes for decision making; (3) feature
comparison is limited to a number of similarity con-
straints, such as =, ≈ (Fan et al., 2009; Singh et al.,
2017). Our second task is to realize an interpretable
EM decision process by comparing feature repre-
sentation per attribute by utilizing a fixed number
of quantitative similarity metrics and then training
a decision tree using a limited amount of labeled
data. Our interpretable EM decision making will
ease the collaboration with domain experts.

3 Methodology

In this section, we introduce (1) a neural model,
Heterogeneous Information Fusion (HIF), for the
task of feature representation, and (2) a decision
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Figure 2: The decoupled EM model comprising the heterogeneous information fusion module and the matching
decision making module. We use circles and rectangles to denote words and vectors, respectively. Cyan lines
with arrow indicate word information aggregation via intra-attribute attention. Red lines with arrow show attribute
information propagation. In the comparison features vector, blue squares are similarity scores by comparing on
HIF(e1)[Ai],HIF(e2)[Ai] and yellow squares are similarity scores by comparing on e1[Ai], e2[Ai] directly. EMB,
AGG, PROP, CFC, and KAT-Induction are calculation components specified in Section 3.

tree, Key Attribute Tree (KAT), for the task of inter-
pretable EM. Figure 2 illustrates the overall work-
flow of our method. The following subsections
dive into details of the two tasks and propose a
novel training scheme for low resource settings by
exploiting unlabelled entity records.

3.1 HIF for Entity Attribute Embedding

HIF : T → Rm×d is a function that maps entity
records into vector representations. An attribute
value e[Ai] of a record e is mapped to a d dimen-
sional vector, written as HIF(e)[Ai] ∈ Rd. HIF

treats attribute values as strings of words and per-
forms word embedding (EMB), word information
aggregation (AGG), and attribute information prop-
agation (PROP) successively.

Word Embedding (EMB). Word embedding is
a pre-train language model that contains features
learned from a large corpus. We convert numerical
and encoded attribute values into strings of digits
or alphabets. For Chinese attribute values, we do
word-segmentation using pkuseg (Luo et al., 2019).
Then, we mark the beginning and the end of an
attribute value with two special tokens, namely
〈BEG〉 and 〈END〉. Finally, we pad each attribute
value with 〈PAD〉 so that they are represented in
the same length l. The representation after padding

is illustrated as below:

(〈BEG〉, w1, w2, · · · 〈END〉, 〈PAD〉, · · · , 〈PAD〉)︸ ︷︷ ︸
length = l

Let W be the set of words, each word w ∈ W
is mapped into a vector, and each attribute value is
mapped into a matrix. Formally, EMB : WN →
RN×de maps N words into an N × de matrix by
executing a look-up-table operation. N is the dic-
tionary size. In particular, we have EMB(e)[Ai] ∈
Rl×de , in which de is the dimension of word em-
bedding vectors. It is worth noting that 〈PAD〉
is embedded to zero vector to ensure that it does
not interfere with other non-padding words in the
following step.

Word Information Aggregation (AGG). Sum-
ming up the l word embeddings as the embedding
of an attribute value will neglect the importance
weight among the l words. We leverage a more
flexible framework, which aggregates word infor-
mation by weighted pooling. The weighting co-
efficients αi for different words are extracted by
multiplying its embedding vector with a learnable,
and attribute-specific vector ai ∈ Rde×1. Subscript
i implies that αi and ai are associated with the
ith attribute Ai. The weighting coefficients are
normalized by Softmax function among words. Fi-
nally, we enable a non-linear transformation (e.g.,



ReLU) during information aggregation with param-
eters Wai ∈ Rde×da . Formally, AGG maps each
attribute value of entity record e into a da dimen-
sional vector AGG(EMB(e)[Ai]) ∈ Rda as below:

AGG(EMB(e)[Ai]) = ReLU (αi EMB(e)[Ai]Wai)

αi = Softmax(EMB(e)[Ai] ai)
> ∈ R1×l

Attribute Information Propagation (PROP).
The mechanism of attribute information propaga-
tion is the key component for noise reduction and
representation unification. This mechanism is in-
spired by the observation that missing attribute val-
ues often appear in other attributes (e.g., Venue and
Conference in Figure 1, Mudgal et al. (2018) also
reported the misplacing issue).

We use “Scaled Dot-Product Attention” (Ashish
et al., 2017) to propagate information among differ-
ent attribute values. We use parameters Q,K,Vi

to convert AGG(EMB(e)[Ai]) into query, key, and
value vectors, respectively (Notice that only Vi

is attribute-specific). A ∈ Rm×m is the attention
matrix. Aij denotes the attention coefficients from
the ith attribute to the jth attribute:

Aij = Softmax
(
qi · kj√
m

)
qi = AGG(EMB(e)[Ai])Q

kj = AGG(EMB(e)[Ai])K

vi = AGG(EMB(e)[Ai])Vi

Record notation e is omitted in vectors q,k,v for
brevity. To keep the identity information, each at-
tribute value after attribute information propagation
is represented by the concatenation of the context
and the value vector:

PROP(AGG(e))[Ai] = ReLU

vi

∥∥∥∥∥∥
∑
j 6=i

Aijvj


HIF outputs with Multiple Layer Perceptron (MLP).
The whole process can be summarized as follows:

HIF(e) = MLP◦PROP◦AGG◦EMB(e) ∈ Rm×d

After HIF, each attribute Ai of an entity record e
has a feature embedding HIF(e)[Ai].

3.2 KAT for Matching Decision
KAT Matching Decision consists of two steps: com-
parison feature computation (CFC) and decision
making with KAT. CFC computes similarity score

for each paired attribute features by utilizing a fam-
ily of well-selected metrics, and concatenate these
similarity scores into a vector (comparison feature).
KAT takes comparison feature as inputs, and per-
form entity matching with a decision tree.

Comparison Feature Computing (CFC).
Given a record pair (e1, e2), CFC implements
a function that maps (e1, e2) to a vector of
similarity scores CFC(e1, e2). The similar-
ity score CFC(e1, e2) is a concatenation of
a similarity vector between paired attribute
values (i.e., e1[Ai], e2[Ai]) and a similarity
vector between their vector embeddings (i.e.,
HIF(e1)[Ai],HIF(e2)[Ai]).

To compare paired attribute values, we follow
Konda et al. (2016) and classify attribute values
into 6 categories, according to the type and the
length, each with a set of comparison metrics for
similarity measurement. For example, for Boolean
attributes, we compare their attribute value by in-
specting whether they are exactly match; for numer-
ical attributes, we compute their absolute difference
as well as their string distance. More details are
presented in Appendix A.

For attribute value embeddings, we choose three
metrics: the cosine similarity, which is the normal-
ized projection distance; the L2 distance, which
measures the distance of two vectors in the finite
dimensional Hilbert space; and the Pearson coef-
ficient, which further normalized the cosine simi-
larity by the mean and the variance. In this way,
we convert entity record pair into similarity score
vector of attributes. Each dimension indicates the
similarity degree of one attribute from a certain
perspective.

KAT Induction. In the matching decision, we
take CFC(e1, e2) as input, and output binary classi-
fication results. We propose Key Attribute Tree, a
decision tree, to make the matching decision based
on key attribute heuristic, in the sense that some
attributes are more important than others for EM.
For example, we can decide whether two records
of research articles are the same by only check-
ing their Title and Venue without examining their
Conference. Focusing only on key attributes not
only saves computations, but also introduces inter-
pretability that has two-folded meanings: (1) each
dimension of CFC(e1, e2) is a candidate feature
matching which can be interpreted as a component
of an EM rule; (2) the decision tree learned by



KAT can be converted into EM rules that follow the
same heuristics as the EM rules made by domain
experts (Fan et al., 2009).

3.3 Model Training

HIF and KAT Induction are trained separately.

HIF Training. We design a self-supervised train-
ing method for HIF to learn from unlabeled data.
Our strategy is to let the HIF model predict manu-
ally masked attribute values. We first represent at-
tribute values, as strings of words, by Weighted Bag
Of Words (WBOW) vectors, whose dimensions
represent word frequencies. Then, we manually
corrupt a small portion of entity records in T1 ∪ T2
by randomly replacing (mask) their attribute values
with an empty string, which forms a new table T ′.
HIF takes T ′ as input and uses another MLP to pre-
dict the WBOW of masked attribute values. HIF is
trained by minimizing the Cross-Entropy between
the prediction and the ground-truth WBOW:

min
HIF

CrossEntropy
(
MLP(HIF(T ′)),WBOW

)
KAT Induction Training. KAT is trained with a
normal decision tree algorithm. We constrain its
depth, in part to maintain the interpretability of
transformed EM rules. We use xgboost (Tianqi
and Carlos, 2016) and ID3 algorithm (Quinlan,
1986) in the experiments. To preserve interpretabil-
ity, the booster number of xgboost is set to 1,
which means it only learns one decision tree. For
(e1, e2, T rue) ∈ D, KAT takes CFC(e1, e2) as in-
put, and True as the target classification output.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets
In order to evaluate our model comprehensively, we
collect multi-scaled datasets ranging from English
corpus and Chinese corpus, including Structured
datasets, Dirty datasets, and Real datasets. Struc-
tured and Dirty datasets are benchmark datasets1

released in (Mudgal et al., 2018). The Real datasets
are sampled from a real E-commerce platform, a
portion of which are manually labeled to indicate
whether they are the same entity or not. The real
datasets have notably more attributes than the struc-
tured or dirty datasets.

1http://pages.cs.wisc.edu/˜anhai/
data1/deepmatcher_data/

Type Dataset #Attr. #Rec. #Pos. #Neg. Rate

Structured
I-A1 8 2,908 132 407 10%
D-A1 4 4,739 2,220 10,143 1%
D-S1 4 13,270 5,347 23,360 1%

Dirty
I-A2 8 2,908 132 407 10%
D-A2 4 4,739 2,220 10,143 1%
D-S2 4 13,270 5,347 23,360 1%

Real
Phone 36 940 1,099 2,241 10%
Skirt 20 9,708 6,371 18,202 1%
Toner 13 7,065 4,551 13,481 1%

Table 1: Statistics of the datasets. #Attr. is the number
of attributes, #Rec. is the number of entity records, and
#Pos. (#Neg.) is the number of labeled positive (neg-
ative) pairs. I-A indicates matching between iTunes-
Amazon. D-A indicates matching between DBLP-
ACM. D-S indicates matching between DBLP-Google
Scholar. We use subscripts 1, 2 to distinguish between
Structured and Dirty data.

Statistics of these datasets are listed in Table 1.
We focus on setting of low resource EM and use
Rate% of labelled data as training set. The valida-
tion set uses the last 20% labeled pairs, and the rest
pairs in the middle are the test set. This splitting is
different from the sufficient resource EM (Mudgal
et al., 2018; Konda et al., 2016) where up to 60%
pairs are used in the training set. For I-A1, I-A2,
and Phone, we use 10% labeled pairs as training
data, because some of the baselines will crash, if
the training data is too small.

We remove trivial entity pairs from the Real
datasets, as Structured and Dirty datasets have been
released. For Real datasets, we remove matching
pairs with large Jaccard similarity (0.32 for Phone,
0.36 for others) and non-matching pairs with small
Jaccard similarity (0.3 for Phone, 0.332 for others).

4.1.2 Baselines
We implement 3 variants of our methods with dif-
ferent KAT Induction algorithms. HIF+KATID3 and
HIF+KATXGB inducts KAT with ID3 algorithm and
xgboost respectively constraining maximum depth
to 3. HIF+DT inducts KAT with ID3 algorithm
with no constraints on the tree depth. We include
reproducibility details in Appendix B.

We compare our methods with three SOTA EM
methods, among which two are publicly available
end-to-end neural methods, and one is feature engi-
neering based method.

1. DeepMatcher (Mudgal et al., 2018) (DM)
is a general deep-learning based EM frame-
work with multiple variants—RNN DM-RNN,

http://pages.cs.wisc.edu/~anhai/data1/deepmatcher_data/
http://pages.cs.wisc.edu/~anhai/data1/deepmatcher_data/
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Figure 3: Results for robustness. HIF+KAT refers to HIF+KATXGB. Each two subgraphs in the same column
correspond to the same drop rate (Drop rate is marked on the top of each column). Each five subgraphs in the same
row correspond to the same dataset. x-axis is the rate of labelled data used in training. y-axis is the F1 score.

Attention DM-ATT, and Hybrid DM-HYB—
depending on what building block it chooses
to construct2.

2. HierMatcher (Fu et al., 2020) is also an end-
to-end neural EM method that compare entity
records at the word level3.

3. Magellan (Konda et al., 2016) integrates both
automatic feature engineering for EM and
classifiers. Decision tree is used as the classi-
fier of Magellan in our experiments.

For ablation analysis, we replace a single com-
ponent of our model with a new model as fol-
lows: HIF+LN replaces KAT with a linear clas-
sifier; HIF+LR replaces KAT with a logistic re-
gression classifier; HIF-ALONE removes com-
parison metrics of attribute values (yellow seg-
ment of comparison features in Figure 2). We
also do ablation analysis for HIF-ALONE as fol-
lows: HIF-WBOW replaces outputs of HIF with
d-dimensional WBOW vectors using PCA. HIF-
EMB replaces the outputs of HIF with the mean
pooling of word embeddings.

4.1.3 Evaluation Metrics
We use F1 score as the evaluation metric. Experi-
ment results are listed in Table 2 and Table 4. All
the reported results are averaged over 10 runs with
different random seeds.

2https://github.com/anhaidgroup/
deepmatcher

3https://github.com/cipnlu/
EntityMatcher

4.2 Experimental Results

General Results. We evaluate the performance
of our model against 3 SOTA models under low
resource settings, where only 1% or 10% of the
total amount of labeled pairs are used for training
(See Table 1). Comparative experiment results on
the 9 datasets are listed in Table 2.

Our decoupled framework achieves SOTA EM
results on all the nine datasets, and demonstrates
significant performance on Dirty datasets, with a
boosting of 4.3%, 14.7%, and 8.4% in terms of F1

score on I-A2, D-A2, D-S2, compared to the best
performance of baselines on their corresponding
datasets. Our methods also outperforms all base-
lines on Structured and two Real datasets (the same
as Magellan on Toner). The out-performance on
Real datasets is marginal because attribute values in
Real datasets are quite standard, which means that
our model does not have many chances to fix noisy
attribute values. Still, our methods achieve a high
F1 score (≥ 94.9%) in Real datasets. These results
indicate out methods are both effective under low
resource settings and robust to noisy data.

Effectiveness to Low Resource Settings We re-
duce the training rate from 60% to 10% to see
whether our method is sensitive to the number of
labeled record pairs as training resources. Exper-
imental results are shown in Figure 3. HIF+KAT

(red line) achieves a stable performance as the num-
ber of labeled record pairs decreases, while the F1

score of DeepMatcher and HierMatcher decrease
simultaneously. Besides, our methods continuously

https://github.com/anhaidgroup/deepmatcher
https://github.com/anhaidgroup/deepmatcher
https://github.com/cipnlu/EntityMatcher
https://github.com/cipnlu/EntityMatcher


Methods I-A1 D-A1 D-S1 I-A2 D-A2 D-S2 Phone Skirt Toner

DM-RNN 63.6 85.4 74.8 42.3 45.7 39.0 90.0 67.6 68.6
DM-ATT 55.8 82.5 79.0 46.5 45.2 57.8 80.3 54.4 48.8
DM-HYB 60.9 86.6 78.0 49.5 46.2 60.4 91.9 64.2 67.4
HierMatcher 61.9 37.5 68.2 37.8 32.6 45.8 86.2 61.7 55.2
Magellan 92.3 93.7 85.1 50.6 65.6 71.1 93.6 96.6 97.2

HIF+DT 96.0 96.4 87.5 54.9 80.1 74.2 94.9 96.7 97.2
HIF+KATID3 95.8 96.6 88.2 51.6 79.0 79.5 94.5 96.7 97.2
HIF+KATXGB 90.6 93.3 87.9 41.5 80.3 79.5 94.4 96.2 97.2

HIF+LN 77.9 21.0 54.7 41.6 - 78.5 72.2 62.8 86.0
HIF+LR 84.2 87.1 84.6 46.5 - 68.1 87.5 41.7 62.0

HIF-WBOW 93.0 92.7 75.4 43.2 47.9 43.7 91.6 66.3 74.0
HIF-EMB 91.1 90.9 76.6 30.8 53.9 46.8 89.9 65.7 79.8
HIF-ALONE 94.6 96.1 82.9 45.6 73.5 63.2 91.8 63.0 72.9

Table 2: F1 score of all methods under low resource set-
ting(%). Dash (-) indicates classifier fails to converge.

outperform DeepMatcher and HierMatcher, rang-
ing from low resource setting to sufficient resource
setting. These results indicate that by exploring un-
labelled data, HIF alleviates the reliance on labeled
record pairs.

Effectiveness to Noisy Heterogeneous Data.
We manually aggravate the quality of datasets by
randomly dropping p% of attribute values (p%
ranges from 0% to 40%), and see to what degree
the feature representations delivered by HIF will
affect the EM decision matching. From left to right,
columns of subgraphs in Figure 3 demonstrates re-
sults with increasing dropping rate. On the I-A1

dataset, the influence of dropping rate is marginal to
HIF+KAT , whose F1 score fluctuates around 95%.
In contrast, F1 scores of both DeepMatcher and
HierMatcher will decrease if more attribute values
are dropped. On the Phone dataset, the dropping
rate’s influence is not severe to HIF+KAT, especially
when the training rate is low. These results show
that HIF is efficient in recovering noisy heteroge-
neous inputs.

4.3 Case Study for Interpretablity

The interpretability of our model means that the
process of decision making of KAT can be easily
transformed into EM rules whose structure is rec-
ommended by domain experts. Figure 4 illustrates
a tree decision process of KAT that determines
whether two records denote the same publication
in the D-A1 (DBLP and ACM) datasets. Each path
from the root to a leaf node of the tree structure can

< �

< �< �

< �< �

Figure 4: The Key Attribute Tree generated by
HIF+KATXGB for D-A1 dataset.

be converted into an EM rule as follows:

Rule 1: if L2 (HIF(e1),HIF(e2)) [Authors] ≥ 10.21

then e1, e2 are not a match;
Rule 2: if L2 (HIF(e1),HIF(e2)) [Authors] < 10.21

∧ L2 (HIF(e1),HIF(e2)) [Title] < 0.73

then e1, e2 are a match;
Rule 3: if L2 (HIF(e1),HIF(e2)) [Authors] < 10.21

∧ L2 (HIF(e1),HIF(e2)) [Title] ≥ 0.73

then e1, e2 are not a match

They can be further read as descriptive rules:
Rule 1: if two records have different authors, they
will be different publications.
Rule 2: if two records have similar authors and
similar titles, they will be the same publication.
Rule 3: if two records have similar authors and dis-
similar titles, they will not be the same publication.
The soundness of such rules can be examined by
our experience.

Important features of KAT are as follows: (1)
KAT is conditioned on attribute comparison; (2)
KAT only selects a few key attributes to compare
features. In our example, there are 4 attributes, Au-
thor, Title, Venue and Conference in D-A1 dataset,
KAT only selects Title and Author for EM decision
making. The transformed rules meet the specifi-
cations of manually designed EM rules of domain
experts (Fan et al., 2009; Singh et al., 2017). This
kind of interpretability will ease the collaboration
with domain experts, and increase the trustworthi-
ness, compared with uninterpretable end-to-end
Deep learning EM models.



4.4 Discussions

Ablation Analysis. Experiment results for abla-
tion models are listed in Table 2. On the one hand,
HIF+LN and HIF+LR generally outperforms Deep-
Matcher and HierMatcher on 7 datasets with on-par
performance on 2 Real datasets. This indicates that
HIF and CFC together extract better comparison
features than end-to-end neural methods under low
resource settings. On the other hand, HIF+LN and
HIF+LR are weaker than the tree induction classi-
fier, suggesting that KAT is more reliable.

Compared with HIF-KATID3, Magellan, and HIF-
ALONE, HIF-KATID3 achieves the highest perfor-
mance, indicating that comparison on both attribute
value embeddings and the original attribute values
are important. Compared with HIF-ALONE, HIF-
WBOW, and HIF-EMB, HIF-ALONE outperforms
HIF-WBOW and HIF-EMB on the Dirty datasets,
showing the positive effects of its information re-
construction.

Finally, comparing HIF+KAT with HIF+DT, we
find that HIF+KAT has better performances than
HIF+DT on most of the datasets, except for (I-A2

and Phone). This shows that non-key attributes
may disturb decision making.

Efficiency. Table 3 shows the running times of
our methods and of the two neural baselines. Our
methods are highly efficient for inference, because
our methods are highly parallel and are memory-
saving. For example, on Phone datasets our meth-
ods can inference in a single batch, while Hier-
Matcher can only run in a batch size of 4 with
24GiB RAM. The training efficiency of our method
is comparable with baselines, because when the
training data is small enough, baseline models may
finish one epoch training with only few batches.

Sufficient Resource EM. Table 4 shows the re-
sults with sufficient training data following the
split method of Mudgal et al. (2018); Fu et al.
(2020). Our method outperforms other methods on
4 datasets, and slightly fall behind on 5 datasets.

5 Related Works

The way of extracting comparison features falls
into two categories: monotonic and non-monotonic.
Monotonic features are (negatively) proportional
similarities between attribute values. They can
be calculated by symbolic rules, such as Jaccard
similarity, Levenshtein similarity (Fan et al., 2009;
Wang et al., 2011; Konda et al., 2016; Singh et al.,

Epoch I-A1 D-A1 D-S1 Phone Skirt Toner

DM-HYB 0.98 1.0 2.3 12.7 5.1 2.5
HierMatcher 0.47 0.3 0.7 41.7 4.0 1.4
HIF+KATID3 0.45 1.0 1.5 2.2 5.5 3.2

Train I-A1 D-A1 D-S1 Phone Skirt Toner

DM-HYB 86 434 958 1,418 2,984 1,473
HierMatcher 37 139 309 3,799 2,809 1,082
HIF+KATID3 344 819 1,085 1,097 1,669 968

Test I-A1 D-A1 D-S1 Phone Skirt Toner

DM-HYB 2.4 31.7 67.1 56.9 229.6 113.9
HierMatcher 2.0 25.1 50.1 113.0 181.1 74.4
HIF+KATID3 0.4 1.0 1.4 2.2 5.4 3.1

Table 3: (Epoch) Training time for one epoch & (Train)
Training time until finish & (Test) Testing time. All the
results are recorded in seconds.

Methods I-A1 D-A1 D-S1 I-A2 D-A2 D-S2 Phone Skirt Toner

DM-RNN 83.1 98.8 93.5 67.1 94.8 89.6 98.2 91.6 90.9
DM-ATT 83.8 98.8 93.7 62.2 94.1 90.4 95.7 93.2 91.6
DM-HYB 83.5 98.8 95.0 64.0 95.9 92.6 98.7 94.2 92.0
HierMatcher 79.1 98.5 94.3 77.1 96.1 93.0 96.5 95.4 94.7

HIF+DT 95.5 97.6 91.7 60.0 87.8 77.1 97.5 99.7 99.8
HIF+KATID3 95.9 98.1 90.2 59.3 89.7 80.5 94.9 99.3 99.6
HIF+KATXGB 95.5 98.1 90.1 63.3 89.3 80.4 96.5 99.7 99.9

Table 4: F1 scores of all methods under sufficient re-
source setting(%).

2017), or learned from differentiable comparison
operations, such as subtracting, point-wise multi-
plication (Fu et al., 2019; Ebraheem et al., 2018;
Fu et al., 2019). Non-monotonic features are
hidden representations of end-to-end neural net-
works, such as Softmax or Sigmoid based sim-
ilarity scores (Fu et al., 2020), attention based
scores (Nie et al., 2019), or simply embedding
based features (Mudgal et al., 2018; Li et al., 2020).

EM with limited resources has recently intrigued
research interest (Thirumuruganathan et al., 2018;
Kasai et al., 2019). Existing explorations seek
solution from leveraging external data to improv-
ing annotation efficiency. External data can be
aggregated via transfer learning (Zhao and He,
2019; Thirumuruganathan et al., 2018; Kasai et al.,
2019; Loster et al., 2021), or via pre-training lan-
guage models (Li et al., 2020). For better annota-
tions, researchers tried active learning (Kasai et al.,
2019; Nafa et al., 2020; Sarawagi and Bhamidipaty,
2002; Arasu et al., 2010), or crowd sourcing tech-
niques (Wang et al., 2012; Gokhale et al., 2014).

The interpretability of neural models will con-
tribute to the trust and the safety. It has become



one of the central issues in machine learning. Chen
et al. (2020) examines interpretability in EM risk
analysis. There are also attempts to explain from
the perspective of attention coefficients (Mudgal
et al., 2018; Nie et al., 2019).

6 Conclusion

We present a decoupled framework for inter-
pretable entity matching. It is robust to both noisy
heterogeneous input and the scale of training re-
sources. Experiments show that our method can
be converted to interpretable rules, which can be
inspect by domain experts and make EM process
more reliable.

In the future, it is intriguing to explore more effi-
cient ways to explore unlabeled data, such as lev-
ering connections among entities, or combine with
pre-trained language models. It is also valuable to
explore how to use our heterogeneous information
fusion module to boost other EM methods, such
as injecting HIF representation as supplementary
information into end-to-end models.
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Attribute Type Comparison Metrics

boolean Exact matching distance

number Exact matching distance, Absolute distance,
Levenshtein distance, Levenshtein similarity

string of length [1, 1]
Levenshtein distance, Levenshtein similarity,

Jaro similarity, Jaro Winkler similarity,
Exact matching distance, Jaccard similarity with QGram tokenizer,

string of length [2, 5]

Jaccard similarity with QGram tokenizer, Jaccard similarity with delimiter tokenizer,
Levenshtein distance, Levenshtein similarity
Cosine similarity with delimiter tokenizer,

Monge Elkan similarity, Smith Waterman similarity,

string of length [6, 10]
Jaccard similarity with QGram tokenizer, Cosine similarity with delimiter tokenizer,

Levenshtein distance, Levenshtein similarity,
Monge Elkan similarity

string of length [10,∞] Jaccard similarity with QGram tokenizer, Cosine similarity with delimiter tokenizer

Table 5: Comparison metrics for different types of attributes.

A Compairison Metrics

We classify attributes into 6 categories: boolean,
number, natural language string of length [1, 1],
natural language string of length [2, 5], natural lan-
guage string of length [6, 10], natural language
string of length [10,∞]. Each has a family of com-
parison metrics. These metrics are listed in Table 5.

We do not distinguish between ‘distance’ and
‘similarity’ as distance can be converted to similar-
ity metric by taking its reciprocal.

B Reproducibility Details

Each epoch of HIF training is evenly divided into 3
batches. The Title attribute values were padded to
l = 64, and the other attribute values are all padded
to l = 32. We modify the padding size on large
datasets, so that our the experiments can be con-
ducted on a single GPU. Chinese datasets are em-
bedded with Tencent Embedding (Song et al., 2018)
and English datasets use fastText embeddings (Bo-
janowski et al., 2017). Multi-head mechanism is
used in the attention module. The embedding size
de for Chinese is 300, and for English is 200. AGG
converts embedding into da dimensional vectors,
where da = 100. PROP further outputs with a 2-
layer MLP with dimension size d = 64. The query
vector and the key vector in the attention layer of
PROP are 16 dimensional vectors. During train-
ing, attribute values are masked at a probability
p = 0.4. The Adam optimizer (Kingma and Ba,
2015) is used for HIF . Training rate and L2 weight
decay are 0.01 and 10−5.

KATXGB is implemented using xgboost 0.9
with objective function binary: logistic. KATID3

is implemented using scikit-learn 0.24.
HIF is implemented with PyTorch 1.4.0
in Python 3.7.6. The comparison fea-
ture metrics in Table 5 are implemented with
py-entitymatching 0.4.0. We also use
Numpy 1.19.2 for matrix calculation. All the
experiments are evaluated on a single NVIDIA
3090 GPU with 24GiB GRAM.

C More Experimental Results

Table 2 in the main text only shows the F1 measure
of the all the methods. Here, we supplement the
experimental results with precision (P = TP

TP+FP ),
recall (R = TP

TP+FN ) on the 9 datasets for more com-
prehensive analysis. Experimental results are listed
in Table 6. Our methods achieve the highest preci-
sion and recall on most of the datasets.



Methods I-A1 D-A1 D-S1

P R F1 P R F1 P R F1

DM-RNN 69.1 60.9 63.6 81.7 90.3 85.4 69.9 80.9 74.8
DM-ATT 54.2 58.4 55.8 75.3 91.2 82.5 75.0 83.5 79.0
DM-HYB 58.4 64.1 60.9 84.3 89.2 86.6 74.3 82.4 78.0
HierMatcher 64.1 61.8 61.9 41.6 38.9 37.5 72.1 67.2 68.2
Magellan 92.3 92.7 92.3 95.4 92.2 93.7 80.7 90.2 85.1

HIF+LN 84.1 73.0 77.9 15.0 97.1 21.0 96.1 44.3 54.7
HIF+LR 79.9 89.1 84.2 86.7 95.7 87.1 85.2 84.2 84.6

HIF+DT 97.1 94.9 96.0 95.9 97.0 96.4 90.0 85.1 87.5
HIF+KATID3 97.1 94.7 95.8 95.8 97.4 96.6 87.8 88.7 88.2
HIF+KATXGB 87.7 94.0 90.6 91.1 95.7 93.3 88.4 87.4 87.9

Methods I-A2 D-A2 D-S2

P R F1 P R F1 P R F1

DM-RNN 43.3 42.4 42.3 39.1 55.5 45.7 31.9 50.7 39.0
DM-ATT 46.4 50.4 46.5 42.5 48.3 45.2 55.5 60.4 57.8
DM-HYB 51.1 54.5 49.5 48.8 44.6 46.2 57.3 65.1 60.4
HierMatcher 41.2 43.9 37.8 48.5 27.8 32.6 50.4 44.1 45.8
Magellan 51.8 49.4 50.6 58.5 74.8 65.6 72.6 69.7 71.1

HIF+LN 54.1 34.0 41.6 - - - 73.1 84.7 78.5
HIF+LR 49.5 44.5 46.5 - - - 62.1 75.7 68.1

HIF+DT 55.6 54.5 54.9 75.4 85.5 80.1 77.8 70.9 74.2
HIF+KATID3 50.6 53.4 51.6 73.6 85.4 79.0 81.9 77.2 79.5
HIF+KATXGB 35.9 51.0 41.5 75.4 86.1 80.3 82.1 77.1 79.5

Methods Phone Skirt Toner

P R F1 P R F1 P R F1

DM-RNN 88.1 92.1 90.0 62.3 73.8 67.6 60.3 80.8 68.6
DM-ATT 77.1 83.8 80.3 44.5 70.1 54.4 40.6 62.2 48.8
DM-HYB 93.9 90.1 91.9 55.6 76.1 64.2 55.0 87.3 67.4
HierMatcher 83.6 89.2 86.2 51.7 77.0 61.7 46.7 67.9 55.2
Magellan 95.1 92.1 93.6 96.1 97.2 96.6 96.7 97.6 97.2

HIF+LN 80.5 65.5 72.2 93.8 51.5 62.8 88.4 83.8 86.0
HIF+LR 97.3 80.0 87.5 99.9 26.4 41.7 62.6 89.8 62.0

HIF+DT 93.0 97.0 94.9 96.7 96.7 96.7 97.6 96.7 97.2
HIF+KATID3 92.2 96.9 94.5 96.9 96.6 96.7 97.6 96.7 97.2
HIF+KATXGB 92.6 96.1 94.4 99.0 93.5 96.2 97.6 96.8 97.2

Table 6: Experimental results under low-resource setting with precision, recall, and F1 measure (%). Dash (-)
indicates these methods fail to converge on the datasets.


