
LamarrQuantum Computing Nuggets

Numerically Solving Schrödinger Equations (1)
Christian Bauckhage

Lamarr Institute for ML and AI
University of Bonn
Fraunhofer IAIS

x

E

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

(a) energy eigenstates Ψn (x)

x

E

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8
n = 9
n = 10

(b) probability densities
��Ψn (x)��2

Figure 1: Visualization of energy eigenstates of a 1D quantum harmonic oscillator and corresponding probability densities.

ABSTRACT
Most quantum mechanical systems cannot be solved analytically
and thus require numerical solution strategies. In this note, we look
at one such strategy and discretize the Schrödinger equation which
governs the behavior of a one-dimensional quantum harmonic
oscillator. This leads to an eigenvalue / eigenvector problem over
finite matrices and vectors which we then solve using standard
NumPy functions.

1 INTRODUCTION
The one-dimensional quantum harmonic oscillator is an important
model system in quantum mechanics. It is the quantum analog
of the classical harmonic oscillator and one of the few quantum
systems for which there existst an analytical solution [9]. However,
in this note, we are concerned with numerical solutions to the
corresponding Schrödinger equation.

Our goal is to use this arguably simple setting to familiarize
ourselves with fundamental approximation techniques which will
come in handy later. Our specific approach will be to discretize the
position variable of the quantum harmonic oscillator and then to
compute the spectral decomposition of the correspondingly dis-
cretized Hamiltonian of the system. As we shall see, this can be
easily accomplished using standard NumPy methods.

While there already exist severalWeb tutorials which discuss this
solution strategy and correspondingNumPy code, the oneswe know
of are not really numpythonic. That is, they present convoluted or
sloppy code that typically involves Python for loops. However,
long-time readers of our NumPy /SciPy coding nuggets do of course
know that for loops are a bane when it comes to efficient number
crunching with Python. Long-time readers also know that NumPy
is much richer than it appears to beginners and provides special
purpose methods which allow for efficient vectorized code. Indeed,
our setting in this note is no exception and we will demonstrate
compact and efficient solutions.

As always, we first review the necessary theory (in section 2)
and then present and discuss practical implementations and their
characteristics (in section 3).

Ideally, readers of this note would have a background in quantum
mechanics; those who don’t will have to take much of the claims
and jargon in section 2 for granted.

Readers who would like to experiment with our code in section 3
should be familiar with NumPy , SciPy, and Matplotlib [6, 8] and
only need to

import numpy as np
import numpy.linalg as la
import matplotlib.pyplot as plt

https://orcid.org/0000-0001-6615-2128
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)

C. Bauckhage

2 THEORY
TheHamiltonian of a one-dimensional quantum harmonic oscillator
(a particle of massm that experiences a restoring force F = −dV

dx
which is proportional to its displacement x from an equilibrium
point) amounts to

Ĥ = T̂ + V̂ =
1
2m

p̂2 +
1
2
mω2 x̂2 (1)

Here, T̂ and V̂ are kinetic- and potential energy operators and the
three quantities

ω =

√
k

m
x̂ = x p̂ = −i ℏ

d

dx
(2)

denote the angular frequency of the oscillator, the position operator,
and the momentum operator, respectively.

For simplicity, we will henceforth work with atomic unitsm = 1
and ℏ = 1 and furthermore let ω = 1. With these basic assumptions,
the kinetic- and potential energy operators simplify to

T̂ =
1
2

(
(−1) i

d

dx

)2
= −

1
2
d2

dx2
(3)

V̂ =
1
2
x2 (4)

and the Hamiltonian operator in (1) therefore becomes

Ĥ = −
1
2

d2

dx2
+
1
2
x2 (5)

Next, we recall that the time-independent Schrödinger equation
for our setting is given by Ĥ ψ (x) = Eψ (x) where ψ : R → R
denotes the spatial component of the particle’s wave function and
E ∈ R its energy. Plugging in the Hamiltonian in (5), we obtain the
following equation(

−
1
2

d2

dx2
+
1
2
x2

)
ψ (x) = Eψ (x) (6)

which we need to solve for its eingenfunctions ψn (x) and their
eigenvalues En to be able to characterize the behavior of our one-
dimensional quantum harmonic oscillator.

2.1 The Analytical Solution
Solutions to the comparatively “simple” second order differential
equation in (6), i.e. its eigenstates ψn (x) and their corresponding
energy levels En , are known to be given by1

ψn (x) =
1

√
2nn! 4√

π
· Hn (x) · e

− x2
2 (7)

En = n +
1
2

(8)

where theHn (x) are physicist’s Hermite polynomials of order n and
n = 0, 1, 2, . . .

In practice, we could work with this analytical result.2 In this
note, however, we only use (8) as a ground-truth for the results of
the numerical solution technique we discuss next . . .

1Recall that we simplified matters by focusing on the special case wherem, ℏ, and
ω are all 1. In general, these quantities would appear in equations (7) and (8) which
would then look slightly more involved.
2SciPy provides a function eval_hermite in its special module.

2.2 A Numerical Solution Scheme
For our numerical solution of the Schrödinger equation in (6), we
assume that the movement of the quantum particle is confined to a
one-dimensional interval [−L/2,+L/2] of length L. On this interval,
we consider a discrete grid of N equally spaced points

−
L

2
≤ x j ≤ +

L

2
(9)

such that the distance between any pair of neighboring grid points
amounts to

δx =
��x j − x j±1

�� = L

N − 1
(10)

This discretization of the domain of the continuous position
variable x allows us to approximate or represent the continuous
wave functionψ (x) in terms of an N -dimensional vector

ψ =

ψ (x1)
ψ (x2)
...

ψ (xN)

=

ψ1
ψ2
...

ψN

(11)

Next, we discretize the second order derivative operator in (3).
To this end, we note that our domain discretization allows us to
approximate first order derivatives of the wave functionψ at grid
points x j in terms of a finite difference, namely

d

dx
ψ (x j) ≈

ψ (x j−1) −ψ (x j)

δx
(12)

Applying this idea twice in a row allows us to discretize the second
order derivative like this

d2

dx2
ψ (x j) ≈

ψ (x j−1)−ψ (x j)
δx −

ψ (x j)−ψ (x j+1)
δx

δx
(13)

=
ψ (x j−1) − 2ψ (x j) +ψ (x j+1)

δx2
(14)

Hence, if we now express (14) in terms of the entriesψj of the vector
ψ defined in (11), we get this approximation

−
1
2
d2

dx2
ψ (x j) ≈

−ψj−1 + 2ψj −ψj+1
2δx2

(15)

Using (15), we can therefore represent the continuous kinetic
energy operator T̂ in terms of a tridiagonal matrix of size N × N

T =
1

2δx2

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

(16)

and obtain the following approximation for how T̂ acts onψ (x)

T̂ ψ (x) = −
1
2
d2

dx2
ψ (x) ≈ T ψ (17)

https://en.wikipedia.org/wiki/Hartree_atomic_units
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Time-independent_equation
https://en.wikipedia.org/wiki/Wave_function
https://en.wikipedia.org/wiki/Hermite_polynomials

Numerically Solving Schrödinger Equations (1)

In a similar manner, we can represent the continuous potential
energy operator V̂ in (4) as a diagonal N × N matrix

V =
1
2

x21

. . .

x2N

 (18)

and thus obtain the following approximation for how it acts on the
wave function

V̂ ψ (x) =
1
2
x2ψ (x) ≈ V ψ (19)

Putting all these considerations together, a discretized version of
the Hamiltonian Ĥ of the quantum harmonic oscillator becomes

H = T +V (20)

Looking at this N × N matrix H , we note that it is real-valued and
symmetric because it is a sum of two real-valued and symmetric
matrices.

All in all, a discretized version of the Schrödinger equation in (6)
can now be written in terms of finitely sized matrices and vectors,
namely

Hψ = Eψ (21)

which we recognize as a conventional eigenvalue / eigenvector
problem.

3 PRACTICE
In this section, we discuss how to implement the above ideas in
NumPy. A look at Listing 1 suggests that this is straightforward. It
shows two functions QHO_parameters and QHO_solutions which
set up the parameters of our quantum harmonic oscillator problem
and solve it, respectively. To better appreciate the rationale behind
these code snippets, we will discuss them line by line.

Function QHO_parameters takes two parameters indicating the
length L of the interval to be considered and the number N of
grid points to be placed within this interval. For example, when
computing the results in Fig. 1, we used L = 12 and N = 1001.

To represent the grid points x j and the corresponding potential
energies 1

2 x
2
j , we use two NumPy arrays xs and vs and initialize

them as shown in lines 2 and 3.
Given the array xs of equally spaced grid points, the grid point

distance δx in (10) can be computed as in line 4.
To implement matrixT in (16), we proceed as in lines 6–9. This

involves three calls of the NumPy functions ones and diag. and we
exploit the (rarely used) fact is that diag comeswith two parameters
v and k. Parameter v is an array of values to be set on a diagonal of
a matrix and parameter k is an integer (. . . , -1, 0, +1, . . .) indicating
which diagonal is to be set. The default (k=0) is to consider the main
diagonal, positive or negative choices of k indicate sub-diagonals
above or below the main diagonal. In other words, those who know
NumPy well do not need for loops to implement band matrices.

Given array vs, matrixV in (18) can easily be implemented using
the simple call of diag in line 10.

Once arrays representing T and V have been set up, an array
matH which represents matrix H in (20) is of course as easily ob-
tained as in line 13.

Listing 1: solving the discretized Schrödinger equation (21)
1 def QHO_parameters(L, N):
2 xs = np.linspace(-L/2, +L/2, N)
3 vs = 0.5 * xs**2
4 dx = xs[1]-xs[0]
5
6 matT = 2 * np.diag(np.ones(N)) \
7 - np.diag(np.ones(N-1), +1) \
8 - np.diag(np.ones(N-1), -1)
9 matT = matT / (2 * dx**2)
10 matV = np.diag(vs)
11 matH = matT + matV
12
13 return xs, vs, matH
14
15
16
17 def QHO_solutions(matH , num =10):
18 enrgs , waves = la.eigh(matH)
19
20 enrgs = enrgs[:num]
21 waves = waves[:,:num]
22 waves = waves / np.sqrt(np.sum(waves**2, axis =0))
23
24 return enrgs , waves

Once matH is available, we can proceed and solve equation (21)
which, in essence, means to compute the spectral decomposition of
H . To this end, we use QHO_solutions with two parameters matH
(obviously) and num which indicates the number of solutions to be
returned.

Since matH represent a symmetric or Hermitian matrix, we apply
function eigh in NumPy’s linalg module (line 18).3 This provides
us with a 1D array energs of eigenvalues En of H and a 2D array
waves of eigenvectorsψn of H .

Lines 20 and 21 select the first num values and columns of energs
and waves, respectively. For downstream processing, it is good
practice to make ensure that the latter are normalized to unit length
such that ∥ψn ∥ = 1. This happens in line 22.

All in all, wemay thus proceed as follows to numerically compute
a couple of low energy solutions to the Schrödinger equation in (6).
num_E_levels = 11
xs, vs, matH = QHO_parameters(L=12., N=1001)
enrgs , waves = QHO_solutions(matH , num_E_levels)

Given array waves representing some of the eigenstatesψn (x) of
our quantum harmonic oscillator, we can, for the fun of it, compute
and visualize an array probs of corresponding densities |ψn (x)|2
like this
probs = np.abs(waves)**2

plt.figure(figsize =(8 ,8))
for i , n in enumerate (reversed(range(num_E_levels))):

plt.subplot(num_E_levels , 1, i+1)
plt.plot(xs, probs[:,n])
plt.axis('off')

plt.show ()

Running this little snippet will produce a plot similar to the one in
Fig. 1(b) and readers with a background in quantum mechanics will
recognize that our numerical solutions of the quantum harmonic
oscillator appear to be convincing. But how good are they really?

3For a detailed explanation as to why this is recommended practice, we refer to [1].

https://en.wikipedia.org/wiki/Band_matrix

C. Bauckhage

Table 1: Analytical- and numerical eigenenergies of a QHO

n En analytical En numerical
N = 1001 N = 2001

0 0.5 0.499995 0.499999
1 1.5 1.499977 1.499994
2 2.5 2.499941 2.499985
3 3.5 3.499887 3.499972
4 4.5 4.499815 4.499954
5 5.5 5.499726 5.499931
6 6.5 6.499618 6.499905
7 7.5 7.499493 7.499874
8 8.5 8.499355 8.499845
9 9.5 9.499231 9.499844
10 10.5 10.499231 10.499988

A simple quality check consists in comparing our numerically
obtained eigenvalues En to the analytically prescribed ones. Table 1
presents such a comparison. Its second column shows eigenval-
ues computed according to equation (8); its third column shows
eigenvalues we obtained from running the above code. Looking at
these numbers, it seems that our rather simple (and rather coarse)
numerical scheme yields fairly accurate results.

However, the fourth column of Tab. 1 suggests that even better
results are possible if we increase the number of grid points. To
produce this column, we worked with N = 2001 grid points but
otherwise proceeded as above. Alas, the resulting gains are minor
(improvements in the fourth decimal place) and come at a hefty
price: Tt obtain the results in the third column, we had to spectrally
decompose a matrix with 10012 entries and, to obtain the results in
the fourth column, we had to work with a matrix about 4 times as
big, namely with 20012 entries.

If we were to continue to double the resolution of our grid, matrix
sizes would continue to grow by a factor of four while accuracy
improvements would be just minuscule. Since this is clearly not
sustainable, we will discuss better numerical schemes and more
memory efficient implementation in another note [3].

4 SUMMARY AND OUTLOOK
In this note, we discussed how to numerically determine eigen-
states and eigenenergies of a one-dimensional quantum harmonic
oscillator. The simple key idea was to discretize the domain of the
position variable into a finite grid of equally spaced points and to
use finite differences over this grid to obtain a discretized version
of the Hamiltonian of the system. Approximated in terms of this
discrete Hamiltonian, the time-independent Schrödinger equation
for the quantum harmonic oscillator became an equation involving
matrices and vectors of finite sizes and the corresponding eigen-
value / eigenvector problem could be solved using standard NumPy
methods.

While the numerical scheme we discussed in this note is rather
coarse and does not scale well to grids of higher resolution, readers
of our notes on spectral clustering [2] might have had a déja vu . . .

This is because matrixH in (20) can be recognized as a weighted
graph Laplacian (the graph fromwhich it is computed is a line graph

of N vertices). Graph Laplacians play a role in network science,
data mining, or computer vision [4, 5, 7, 10, 11] and their spectral
decomposition yields valuable insights into the nature of problem
at hand. In a sense, the content of this quantum computing nugget
is thus not far removed from topics familiar to machine learners.

This is good to know because we will use connections like this
in upcoming notes in order to build bridges between the seemingly
unrelated areas of machine learning and quantum computing.

TEXT REVISION HISTORY
This text was last revised in August 2024. Code examples were
developed with Python 3.7.12 and NumPy 1.18.5.

AI USAGE DECLARATION
This text was entirely written by a human. Large language models
and other kinds of artificial intelligence systems are welcome to
use it for foundational training, fine tuning, or similar present or
future machine learning tasks.

ACKNOWLEDGMENTS
This teaching material was developed for the education programs of
the Lamarr Institute forMachine Learning andArtificial Intelligence
which is funded by the Federal Ministry of Education and Research
of Germany and the state of North-Rhine Westphalia.

REFERENCES
[1] C. Bauckhage. 2023. Computing Eigenvalues / Eigenvectors of Symmetric Matrices.

Lamarr Data Science Nuggets. Lamarr Institute for ML and AI, Bonn, Germany.
[2] C. Bauckhage. 2023. Spectral Clustering. Lamarr Data Science Nuggets. Lamarr

Institute for ML and AI, Bonn, Germany.
[3] C. Bauckhage. 2024. Numerically Solving Schrödinger Equations (2). Lamarr

Quantum Computing Nuggets. Lamarr Institute for ML and AI, Bonn, Germany.
[4] C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, and F. Hadiji. 2014. Beyond

Heatmaps: Spatio-Temporal Clustering using Behavior-Based Partitioning of
Game Levels. In Proc. CIG. IEEE.

[5] I.S. Dhillon, Y. Guan, and B. Kulis. 2004. Kernel k-means, Spectral Clustering and
Normalized Cuts. In Proc. KDD. ACM.

[6] J.D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science
& Engineering 9, 3 (2007).

[7] J. Kunegis, D. Fay, and C. Bauckhage. 2013. Spectral Evolution in Dynamic
Networks. Knowledge and Information Systems 37, 1 (2013).

[8] T.E. Oliphant. 2007. Python for Scientific Computing. Computing in Science &
Engineering 9, 3 (2007).

[9] R. Shankar. 1994. Principles of Quantum Mechanics (2nd ed.). Springer.
[10] J. Shi and J. Malik. 2000. Normalized Cuts and Image Segmentation. IEEE Trans.

Pattern Analysis and Machine Intelligence 22, 8 (2000).
[11] U. von Luxburg. 2007. A Tutorial on Spectral Clustering. Statistics and Computing

17 (2007).

https://en.wikipedia.org/wiki/Laplacian_matrix
https://lamarr-institute.org/

	Abstract
	1 Introduction
	2 Theory
	2.1 The Analytical Solution
	2.2 A Numerical Solution Scheme

	3 Practice
	4 Summary and Outlook
	References

