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ABSTRACT
We revisit the problem of numerically solving the Schrödinger
equation for a one-dimensional quantum harmonic oscillator. We
reconsider our previous finite difference scheme and discuss how
higher order finite differences can lead to more accurate solutions.
In particular, we will consider a five point stencil to approximate
second order derivatives and implement the approach using SciPy
functions for sparse matrices.

1 INTRODUCTION
Previously [2], we considered a simple numerical scheme for solving
the time-independent Schrödinger equation for a one-dimensional
quantum harmonic oscillator (in atomic units withm = 1, ℏ = 1)(

−
1
2

d2

dx2
+
1
2
x2

)
ψ (x) = Ĥ ψ (x) = Eψ (x) (1)

The key idea was to confine and discretize the position variable x .
We thus introduced an interval [−L/2,+L/2] of length L and a grid
of N equally spaced points −L/2 ≤ x j ≤ +L/2. This allowed us to
approximate the wave functionψ (x) in terms of a vectorψ ∈ RN

and the Hamiltonian Ĥ in terms of a matrixH ∈ RN×N so that the
Schrödinger equation became

Hψ = Eψ (2)

We then saw that it is easy to set up and to solve this eigenvalue /
eigenvector problem using standard NumPy functions. Yet, when
we looked at the accuracy of the resulting solutions, we found it to
be good but not as good as one might wish for.

In this note, we therefore first of all discuss the idea of working
with higher order finite differences to improve accuracy.

Second of all, we address the following issue: If the number N
of grid points is large, a dense representation of the N × N matrix
H will have a very large memory footprint which may render the
code from our previous note to be useless. However, since H is
sparse, we can work with sparse matrix representations and we will
discuss the use of corresponding functionalities in SciPy’s sparse
module.

As always, we will first review the necessary theory (in section 2)
and then present code examples (in section 3). Throughout, we
assume that readers are familiar with the content of [2]. Those who
want to experiment with our code should have experience with
NumPy and SciPy [5] and only need to
import numpy as np
import scipy.sparse as sprs
import scipy.sparse.linalg as sprsla

2 THEORY
In [2], we saw that modeling the domain of the continuous position
variable x of a quantum harmonic oscillator in terms of a discrete
grid of N > 1 equally spaced points −L/2 ≤ x j ≤ +L/2 allows for
a finite difference approximation of the second derivative of the
wave function at the grid points. In particular, we considered

d2

dx2
ψ (xj ) ≈

ψ (xj−1) − 2ψ (xj ) +ψ (xj+1)

δx2
(3)

where δx = |x j − x j±1 | = 1/N−1 is a number between 0 and 1. In
what follows, we will show that

d2

dx2
ψ (xj ) ≈

−ψ (xj−2) + 16ψ (xj−1) − 30ψ (xj ) + 16ψ (xj−1) −ψ (xj−2)

12 δx2
(4)

gives a better approximation of the second derivative.
To substantiate this claim, we need to look at the rationale behind

the approximations in (3) and (4).

2.1 Finite Differences and First Derivatives
To begin with, we revisit finite difference approximations of the
first derivative ψ ′(x) of a function ψ (x). To this end, we consider
the following truncated Taylor series expansion

ψ (x + δx) ≈ ψ (x) + δx ψ ′(x) +
1
2
δx2ψ ′′(x) (5)

whereψ ′′(x) denotes the second derivative ofψ (x). If we slightly
rearrange the terms in the expression in (5), we find

ψ (x + δx) −ψ (x)

δx
−ψ ′(x) ≈ δx

ψ ′′(x)

2
(6)

whose left hand side tells us that the so called forward difference
ψ (x + δx) −ψ (x)

δx
(7)

approximates the first derivativeψ ′(x) but, according to the right
hand side, comes with an approximation error of the order ofO

(
δx

)
.

To obtain a better approximation of the first derivative, we next
consider the following two expressions

ψ (x + δx) ≈

ψ (x) + δx ψ ′(x) +
1
2
δx2ψ ′′(x) +

1
6
δx3ψ ′′′(x) (8)

ψ (x − δx) ≈

ψ (x) − δx ψ ′(x) +
1
2
δx2ψ ′′(x) −

1
6
δx3ψ ′′′(x) (9)

whereψ ′′′(x) denotes a third derivative.
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If we subtract the right hand side of (9) from the right hand side
of (8) and rearrange the resulting expression, we obtain

ψ (x + δx) −ψ (x − δx)

2δx
−ψ ′(x) ≈ δx2

ψ ′′′(x)

6
(10)

which tells us that the so called central difference
ψ (x + δx) −ψ (x − δx)

2δx
(11)

is an approximation of ψ ′(x) whose error is proportional to δx2.
Moreover, since 0 < δx < 1, we have δx2 < δx which further tells
us that the central difference gives a better approximation ofψ ′(x)
than the forward difference.

To obtain even better (centered) finite difference approximations
ofψ ′(x) we have to consider more terms in the Taylor expansions
as well as larger neighborhoods around x . For instance, if we work
with

ψ (x + 1 · δx) ≈
5∑

n=0
(+1)n δxn

ψ (n)(x)

n!
(12)

ψ (x − 1 · δx) ≈
5∑

n=0
(−1)n δxn

ψ (n)(x)

n!
(13)

ψ (x + 2 · δx) ≈
5∑

n=0
(+2)n δxn

ψ (n)(x)

n!
(14)

ψ (x − 2 · δx) ≈
5∑

n=0
(−2)n δxn

ψ (n)(x)

n!
(15)

we find that 8 ·
(
(12) − (13)

)
−
(
(14) − (15)

)
cancels out any terms

involving δx2 and δx3 and yields
−ψ (x + 2δx) + 8ψ (x + 1δx) − 8ψ (x − 1δx) +ψ (x + 2δx)

12δx
as an O

(
δx4

)
approximation toψ ′(x).

2.2 Finite Differences and Second Derivatives
Approximations of higher order derivatives can be obtained in a
similar fashion. For instance, for the second derivativeψ ′′(x), which
is of major interest in the context of Schrödinger equations, we
may consider

ψ (x + 1 · δx) ≈
4∑

n=0
(+1)n δxn

ψ (n)(x)

n!

ψ (x − 1 · δx) ≈
4∑

n=0
(−1)n δxn

ψ (n)(x)

n!

to get

ψ (x + δx) − 2ψ (x) +ψ (x − δx)

δx2
−ψ ′′(x) ≈ δx2

ψ (4)(x)

24
This tells us that the finite difference approximation we considered
in (3) actually is an O

(
δx2

)
approximation of the second derivative

of the wave function of the quantum harmonic oscillator.1

1Here is an interesting side note: In [2], we numerically solved the Schrödinger equation
in (1) on discrete grids of N1 = 1001 and N2 = 2001 points in the interval [−L/2, +L/2].
We observed that the eigenenergies we obtained from working with the larger and
thus denser grid were closer to the theoretically prescribed values. Given our present

Again, we can do better. For instance, if we consider the following
(four!) expressions

ψ (x ± 1 · δx) ≈
5∑

n=0
(±1)n δxn

ψ (n)(x)

n!
(16)

ψ (x ± 2 · δx) ≈
5∑

n=0
(±2)n δxn

ψ (n)(x)

n!
(17)

we find that

16ψ (x + 1δx) + 16ψ (x − 1δx) ≈ 32ψ (x) + 16δx2ψ ′′(x)

as well as

ψ (x + 2δx) +ψ (x − 2δx) ≈ 2ψ (x) + 4δx2ψ ′′(x)

Subtracting the second expression from the first and rearranging
the resulting term then establishes that

−ψ (x + 2 δx ) + 16ψ (x + 1 δx ) − 30ψ (x ) + 16ψ (x − 1 δx ) −ψ (x − 2 δx )
12 δx2

is an O
(
δx4

)
approximation to ψ ′′(x). In other words, the finite

difference approximation we presented in (4) actually is an O
(
δx4

)
approximation of the second derivative of the wave function of the
quantum harmonic oscillator and hence indeed more precise than
the one in (3).

2.3 Some Terminology and Context
The two approximations in (3) and (4) are given w.r.t. a regular
grid of points. The one in (3) involves three points x j−1, x j , x j+1 to
approximate the second derivative ofψ at x j . The one in (4) involves
five points x j−2, x j−1, x j , x j+1, x j+2. Such neighborhoods around a
point x j are also called stencils. As the stencil in (3) involves three
points, its is called a three-point stencil; as the one in (4) involves
five points, its is called a five-point stencil.

There also is a connection to signal processing: The two sets of
coefficients 1/δx 2 ·

{
1,−2, 1

}
and 1/12 δx 2 ·

{
−1, 16,−30, 16,−1

}
in

(3) and (4) are sometimes called convolution kernels. Indeed, if we
define the discrete functionsψ [j] = ψ (x + j · δx), j ∈ Z and

f3[j] =


− 2
δx 2 if j = 0
1
δx 2 if j = ±1
0 otherwise

f5[j] =


− 30
12 δx 2 if j = 0
16

12 δx 2 if j = ±1
− 1
12 δx 2 if j = ±2
0 otherwise

we have

(3) ⇔
(
ψ ∗ f3

)
[j] =

1∑
k=−1

ψ [j] f3[j − k]

(4) ⇔
(
ψ ∗ f5

)
[j] =

2∑
k=−2

ψ [j] f5[j − k]

discussion, this now makes mathematical sense. As δ2x = 1/2000 < δ1x = 1/1000, we
have δ2x 2 < δ1x 2 so that the finite difference approximation based on 2001 grid
points provides a more accurate approximation of the second derivative of the wave
function the one based on 1001 grid points.

https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Stencil_(numerical_analysis)
https://en.wikipedia.org/wiki/Five-point_stencil
https://en.wikipedia.org/wiki/Five-point_stencil
https://en.wikipedia.org/wiki/Convolution#Fast_convolution_algorithms
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2.4 Back to Solving the Schrödinger Equation
If we use a grid of N > 1 equally spaced points −L/2 ≤ x j ≤ +L/2 to
discretize the position variable x of a quantum harmonic oscillator,
we have δx = x j −x j−1 = 1/N−1 and can discretize the Schrödinger
equation in (1).

To this end, we introduce an N -dimensional vector ψ whose
components are given by ψj = ψ (x j ) and represent the Hilbert
space operator Ĥ = T̂ + V̂ in terms of an N × N matrix.

Just as we did in [2], we represent the potential energy operator
V̂ = 1/2x2 as a diagonal matrix

V =
1
2


x21

. . .

x2N


(18)

Contrary to [2] where we used the 3-point stencil in (3) to rep-
resent the kinetic energy operator T̂ = −d2/2dx 2 as a tridiagonal
matrix2

T 3 = −
1

2 δx2



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2


(19)

we will now work with the 5-point stencil in (4) to represent T̂ in
terms of a pentadiagonal matrix

T 5 = −
1

24 δx2



−30 16 −1

16 −30 16 −1

−1 16 −30 16 −1

. . .
. . .

. . .
. . .

. . .

−1 16 −30 16 −1

−1 16 −30 16

−1 16 −30



(20)

Using these definitions, the action of the Hamiltonian Ĥ of our
quantum harmonic oscillator can approximated as

Ĥ ψ (x) ≈ Hψ (21)

where H = T 5 + V . By the same token, we can approximate the
right hand side of the Schrödinger equation as

Eψ (x) ≈ Eψ (22)

so that we once again end up with the discretized Schrödinger
equation in (2). Next, we discuss how to solve this eigenvalue /
eigenvector problem using SciPy’s sparse matrix functionalities.

3 PRACTICE
In [2], we usedNumPy methods to solve the discretized Schrödinger
equation in (2) for the eigenenergies and eigenstates of the quantum
harmonic oscillator.

There, we worked with H = T 3 +V and could now apply our
recipes from back then to work with the numerically more accurate
matrix H = T 5 +V .

2Recall that this matrix can be understood as the Laplacian of a weighted line graph.
Since Laplacians like this occur in the context of spectral clustering [1, 3, 4, 7, 8], there
also is a close connection to methods known to machine learners.

Listing 1: solving the discretized Schrödinger equation (2)
1 def QHO_params_5pt(L, N):
2 xs = np.linspace(-L/2, +L/2, N)
3 vs = 0.5 * xs**2
4 dx = xs[1]-xs[0]
5
6 d0 = -30. * np.ones(N)
7 d1 = 16. * np.ones(N-1)
8 d2 = - 1. * np.ones(N-2)
9
10 matT = -sprs.diags ([d0, d1, d1, d2, d2],
11 [ 0, +1, -1, +2, -2])
12 matT = matT / (2 * 12*dx**2)
13 matV = sprs.diags ([vs], [0])
14 matH = matT + matV
15
16 return xs, vs, matH
17
18
19 def QHO_solutions(matH , num =10):
20 enrgs , waves = sprsla.eigsh(matH , k=num , which='SM')
21 waves /= np.sqrt(np.sum(waves**2, axis =0))
22
23 return enrgs , waves

However, our approach in [2] was wasteful because, dealing with
a grid of size N , we considered a dense representation of the N ×N
matrix H . While it is computationally easy to determine spectral
decompositions of band matrices (i.e. matrices whose non-zero
elements only occur on the main diagonal and on diagonals on
either side), many computers will have difficulties storing a dense
representation of H if N get large, say, N ≫ 105.

Here, we therefore emphasize that band matrices are sparse. For
example, our pentadiagonal matrix H = T 5 + V contains only
N + 2(N − 1)+ 2(N − 2) = 5N − 6 ≪ N 2 non-zero entries. This does
of course suggest to implement sparse matrix solutions to avoid
issues due to lack of memory.

Our recipes in Listing 1 therefore involve functions from SciPy’s
sparsemodule. Similar to [2], we define functions QHO_params_5pt
and QHO_solutions, to set up and to solve our quantum harmonic
oscillator problem.

Function QHO_params_5pt takes two parameters which indicate
the length L of the spatial interval to be considered and the number
N of grid points to be placed within this interval. In lines 2 and
3, we once again set two 1D arrays xs and vs which represent
locations x j and corresponding potential energies 1

2 x
2
j . Line 4, too,

is already known from our previous solution and sets the grid point
distance δx .

Lines 6–9 are new. Here, we set three 1D arrays d0, d1, and d2
which represent the main diagonal and the ±1 and ±2 diagonals of
the pentadiagonal matrixT 5 in (20).

To implement this matrix as a sparse matrix, we then apply
the SciPy function diags. In lines 10 and 11, we cal this function
with two parameters: The first is a list of NumPy arrays containing
numbers to be put on diagonals and the second is a list of integers
indicating which diagonals are to be filled. Method diags reoccurs
in line 13 where we implement matrix V in (18) as a sparse matrix
as well. Since matT and matV now contain sparse representations
of matrices of commensurable sizes, we may simply add them as
in line 14 to obtain a sparse representation matH of our problem
Hamiltonian H .
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Table 1: Analytical- and numerical eigenenergies of a QHO

n En analytical En numerical
3-point stencil 5-point stencil

0 0.5 0.499995 0.500000
1 1.5 1.499977 1.500000
2 2.5 2.499941 2.500000
3 3.5 3.499887 3.500000
4 4.5 4.499815 4.500000
5 5.5 5.499726 5.500000
6 6.5 6.499618 6.500000
7 7.5 7.499493 7.500001
8 8.5 8.499355 8.500008
9 9.5 9.499231 9.500045
10 10.5 10.499231 10.500227

Once matH is available, we can compute its spectral decompo-
sition. To this end, we use QHO_solutions with two parameters
matH (obviously) and num which we will discuss shortly.

Since matH represents a sparse matrix, we work with a func-
tion from scipy.sparse.linalg and, since matH also represents
a Hermitian matrix, this function is eigsh. Line 20 demonstrates
its use.

The first parameter passed to eigsh is the matrix whose spectral
decomposition is to be computed. The second parameter k indicates
how many eigenvalues / eigenvectors are to be determined. In our
case, this number is contained in num. The third parameter which
indicated which eigenvalues / eigenvectors are to be determined.
Here, we set it to ’SM’ which is to say that we are interested in
those eigenvalues (and their corresponding eigenvectors) which
are smallest in magnitude.

As a result, line 20 produces a 1D array enrgs of the num smallest
eigenvalues En ofH and a 2D array waves of eigenvectorsψn . Just
as in [2], we are maybe overly prudent but run the computation in
line 21 to ensure that the latter are normalized such that ∥ψn ∥ = 1.

Now, there would be much more to say about working with
sparse matrix representations and corresponding SciPy functions,
but this note is not the place for that. However, what we can and
should do, is to compare the results of the snippets we just discussed
to those we presented in [2] . . .

There, we said that analytical solutions for the eigenenergies of
a quantum harmonic oscillator (in atomic units) are En = n+ 1/2 [6].
We used these as a baseline to asses the quality of the results we
obtained from the numerical solution based on the 3-point stencil
matrixH = T 3+V . Now, we can use our code in Listing 1 to include
the results obtained from working with the 5-point stencil matrix
H = T 5 +V in the assessment.

Table 1 compares analytical and numerical results for the first
0 ≤ n ≤ 10 eigenenergies En where all numerical results were
obtained fromworking with grids ofN = 1001 points in the interval
[−L/2,+L/2] with L = 12. Looking at these numbers, we conclude
that the higher order finite difference scheme that invokes a 5-point
stencil to approximate second derivatives of the wave function
does indeed produce more accurate results than the 3-point stencil
version we considered previously.

4 SUMMARY AND OUTLOOK
We revisited the problem of numerically solving the Schrödinger
equation for a one-dimensional quantum harmonic oscillator and
extended our previous recipe in two regards: First of all, we worked
with a more accurate finite difference approximation of the sec-
ond derivative featuring prominently in the Schrödinger equation.
Second of all, we pointed out that the discretized version of the
Hamiltonian of the system is a sparse matrix and thus applied SciPy
methods for sparse matrix computations.

In addition to the spectral decomposition methods we have seen
so far, there are many other numerical approaches towards solving
Schrödinger equations. Some of these will be discussed in future
notes. This will provide us with opportunities of getting to know,
say, more specialized SciPy functions for solving differential equa-
tions.

TEXT REVISION HISTORY
This text was last revised in August 2024. Code examples were
developed with Python 3.7.12 and NumPy 1.18.5.

AI USAGE DECLARATION
This text was entirely written by a human. Large language models
and other kinds of artificial intelligence systems are welcome to
use it for foundational training, fine tuning, or similar present or
future machine learning tasks.
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