Sommersemester 2024

Bachelor

Projektgruppen

Maschinelles Lernen

Bachelor BA-INF 051

In dieser Projektgruppe werden grundlegende Algorithmen aus den Bereichen Wissensentdeckung und Data Mining erarbeitet, diskutiert, implementiert und empirisch evaluiert. In den Projektgruppen werden grundlegende Algorithmen aus den Bereichen Maschinelles Lernen, Wissensentdeckung und Data Mining vorgestellt. Die Aufgabe der Studierenden ist es, in Kleingruppen jeweils einen Algorithmus zu erarbeiten und einen wissenschaftlichen Vortrag darüber zu halten. Im Anschluss soll der Algorithmus implementiert und evaluiert werden. Neben einem Abschlussvortrag soll eine schriftliche Ausarbeitung erstellt werden.

Details

Preliminary Meeting

Mittwoch, 10. April 2024
10 Uhr s.t.

Participants

max. 6

Prerequisites

keine

Registration

Bitte registrieren Sie sich für den Kurs in ecampus bis zum 09.04.2024 , siehe den Button unten.

Wissensentdeckung

Bachelor BA-INF 051

In dieser Projektgruppe werden grundlegende Algorithmen aus den Bereichen Wissensentdeckung und Data Mining erarbeitet, diskutiert, implementiert und empirisch evaluiert. In den Projektgruppen werden grundlegende Algorithmen aus den Bereichen Maschinelles Lernen, Wissensentdeckung und Data Mining vorgestellt. Die Aufgabe der Studierenden ist es, in Kleingruppen jeweils einen Algorithmus zu erarbeiten und einen wissenschaftlichen Vortrag darüber zu halten. Im Anschluss soll der Algorithmus implementiert und evaluiert werden. Neben einem Abschlussvortrag soll eine schriftliche Ausarbeitung erstellt werden.

Lecturers

Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Fouad Alkhoury, Sebastian Müller, Vanessa Toborek

Details

Preliminary Meeting

Mittwoch, 10. April 2024
10 Uhr s.t.

Participants

max. 6

Registration

Bitte registrieren Sie sich für den Kurs in ecampus bis zum 09.04.2024 , siehe den Button unten.

(Computer) Science Communication

Bachelor BA-INF 051

 In dieser Projektgruppe werden grundlegende Algorithmen aus den Bereichen Wissensentdeckung und Data Mining erarbeitet und diskutiert. Im Mittelpunkt steht die Erarbeitung der Inhalte für verschiedene Zielgruppen. Die Aufgabe der Studierenden ist die Vermittlung von Wissen in Form eines Coding Nuggets als praktische Anleitung für Fachleute als auch in Form eines Blog Beitrags für interessierte Laien. Dabei wird auf die unterschiedlichen Anforderungen bei der Wissenvermittlung für unterschiedliche Zielgruppen eingegangen.

Details

Preliminary Meeting

Mittwoch, 10. April 2024
10 Uhr s.t.

Participants

max. 6

Registration

Bitte registrieren Sie sich für den Kurs in ecampus bis zum 09.04.2024 , siehe den Button unten.

Lectures

Introduction to Machine Learning

Bachelor BA-INF 157

With more and more data available for analysis and decision making - from web documents and digital media to sensory data from cameras, microphones, and ubiquitous devices - it becomes increasingly more important to understand how such large volumes of data can be analyzed by computers and used as the basis for new intelligent services, for decision making, for making computers learn from experience, and for generative artificial intelligence. In companies around the world, from retail and banks all the way to Google, OpenAI, etc., intelligent learning and analysis techniques are used to improve business decisions. Likewise, in science, important discoveries are made easier by automated learning methods, and games and other artifacts are being made adaptive with learning technology. This module is offered as an introduction to Machine Learning for bachelor's students. We will give a practically oriented introduction into the most popular methods from Machine Learning, including regression methods, decision tree methods, clustering, artificial neural networks, kernel methods such as SVM, reinforcement learning, deep learning methods such as, for example,  autoencoders, sequence models, and transformers. This will be complemented with lectures on the most important approaches within computational learning theory. Within the exercises, it is possible to try out the most important methods and popular Machine Learning systems.

Please note that the course will be held in English.

Lecturers

Details

Lecture - Start/Time/Place

19. April 2024
Fridays, 10:15  - 11:45

 Friedrich-Hirzebruch Allee 5 - Hörsaal 1  

Exercises - Start/Time/Place

26. April 2024
Fridays, 12:15  - 13:45 ,

 Meckenheimer Allee 176 - Hörsaal IV  

Tutor

Prerequisites

BA-INF 035 - Datenzentrierte Informatik

Registration

Please register in ecampus (Read how to access eCampus)

Important Dates

Exam (1st try)

2024-08-01, 13:00 - 15:00, HS 1/2

Exam (2nd try)

2024-09-10, 11:00 - 13:00, HS 1/2

Master

Lectures

Reinforcement Learning

Master MA-INF 4235

Klicken Sie hier, um einen Text einzugeben.

Exercises

Thore Gerlach, Maurice Günder

Details

Lecture - Start/Time/Place

08. April 2024
Mondays, 12:15  - 13:45

Hörsaal IV, Meckenheimer Allee 176

Exercises - Start/Time/Place

19. April 2024
Fridays, 14:15  - 15:45

Hörsaal IV, Meckenheimer Allee 176

Tutors

Thore Gerlach, Maurice Günder

Registration

Please register in ecampus

Important Dates

Exam (1st try)

2024-07-23, 12:00 - 14:00, HS 1/2

Exam review: 2024-09-02, 13:00 - 15:00, 1.047

Exam (2nd try)

2024-09-20, 09:00 - 11:00, HS 1/2

Exam review: 2024-11-22, 14:00 - 16:00, Hörsaal IV, Meckenheimer Allee 176

Seminars

Principles of Data Mining and Learning Algorithms: Selected Papers from the state-of-the-art

Master: MA-INF 4209

Update: The building is closed on Wednesday, April 10 because of a possible WWII bomb near the Poppelsdorf campus. The first meeting of the seminar will be postponed by two weeks:

The new date is Wednesday, 24. April 2024 10:15  - 11:45 

The seminar will held as a block seminar. Further seminar dates will be announced during the preliminary meeting.

Lecturers

Details

Preliminary Meeting

24. April 2024
Wednesday, 10:15  - 11:45

Institut für Informatik, Raum 1.033

Friedrich-Hirzebruch-Allee 8

Participants

max. 6

Prerequisites

none

Registration

Please register in ecampus for the course, see the button below.

Philosophical Aspects of Explainability in Deep Learning

Master: MA-INF 4209

If you missed the preliminary meeting but would still like to participate in the seminar, please visit the eCampus site for the course or contact the lead instructor Brendan Balcerak Jackson.

In this seminar we study philosophical theories of scientific explanation and understanding and examine how they inform formal approaches to explainability for deep learning and other neural network architectures. The seminar will be held as a block seminar. Further seminar dates will be announced during the preliminary meeting.

Details

Next Meeting

Wednesday, 24. April 2024
14:15-15:45

Institut für Informatik, Raum 0.107

Friedrich-Hirzebruch-Allee 8

Participants

max. 6

Prerequisites

none

Registration

without regristration

Principles of Data Mining and Learning Algorithms: Visual Analytics

Master: MA-INF 4209

In this seminar, we learn skills and knowledge required for Visual Analytics.

Our goal is to be in a learning process where you explore why these skills are essential through hands-on tasks and active participation


Our targets during the seminar:

  • to enable you to find visual representations that facilitate reasoning with data
  • to understand computational methods in visualization
  • to develop visual interfaces that aid human interpretation of visually represented data, preferably in an interactive manner.

As preparation for our first meeting, please find and bring a couple of real-world examples of visual representations, such as charts, that you find effective in interpreting data. Include a brief summary explaining what you think makes these visualizations useful.

Prerequisite: a basic understanding of data visualization tools such as D3.js (JavaScript) or Plotly (Python) is ideal, though familiarity with Google Spreadsheets is sufficient for participation.

What you will have to do: we plan at least one presentation on your development process and a final report on the visual analytics tools you've created. The course will aim to seamlessly blend theoretical concepts with hands-on practice.

Seminar materials will be accessible on my website, which provides participants with updates, including important dates and announcements.

Contact

Details

Preliminary Meeting

Friday, 05 April 2024
10:00 am

and

Monday, 15 April 2024

10:00 am 

Room 3.110,

Friedrich-Hirzebruch-Allee 8

Participants

max. 6

Prerequisites

none

Registration

Please register in eCampus for the seminar.

Labs

Development and Application of Data Mining and Learning Systems: Machine Learning

Master: MA-INF 4306

In this lab, machine learning and data mining techniques are implemented and used in a wide range of applications.

Contact

Details

Preliminary Meeting

Friday, 05 April 2024
10:00 h

Room 3.110,

Friedrich-Hirzebruch-Allee 8

Participants

max. 6

Prerequisites

MA-INF 4212 highly recommended

Registration

Please register in ecampus for the course until 04 April 2024 , see the button below.

Development and Application of Data Mining and Learning Systems: Data Mining

Master: MA-INF 4306

In this lab, machine learning and data mining techniques are implemented and used in a wide range of applications.

Details

Preliminary Meeting

Friday, 05 April 2024
10:00 h

Room 3.110,

Friedrich-Hirzebruch-Allee 8

Participants

max. 6

Prerequisites

MA-INF 4212 highly recommended

Registration

Please register in ecampus for the course until 04 April 2024 , see the button below.

Development and Application of Data Mining and Learning Systems: Neural Operators and ODE inference

Master: MA-INF 4306

This lab corresponds to a natural continuation of our seminar last semester on Neural Operators. However, having participated in said seminar is not a requirement. All students are welcome to participate, and no background knowledge on neural operators is required.

Neural Operators employ neural networks to learn mappings between infinite dimensional spaces, which simply means that one can train neural networks to e.g.

  1. automatically solve entire families of complex partial differential equations;
  2. integrate families of functions; or
  3.  infer families of functions and (stochastic) processes from experimental data.

Last seminar dealt with point (ii). In this lab we will explore point (iii), to wit: how neural operators can be leveraged to infer, in the spirit of Bayesian inference, functions from noisy sets of observations. Specifically we will infer Ordinary Differential Equations (ODEs) from noisy observations on their solutions.

Our main goals will be to:

  • test these ideas with some simple coding exercises we will do from scratch
  • read and discuss about some current issues of the methodology and their possible solutions.

What you will have to do: we will ask you to give a set of presentations about your numerical experiments, and hand in a final report. You will work in groups of up to 3 people.

Requirements: working knowledge of machine learning libraries like PyTorch or Jax

Dates: We will have our preliminary meeting next Monday, April 15, at 10am in Room 3.110 of the B-IT

Lecturers

Contact  

Details

Preliminary Meeting

Monday, April 15, 2024 at 10am 

Room 3.110 B-IT

Participants

max. 6

Prerequisites

working knowledge of machine learning libraries like PyTorch or Jax

Registration

Klicken Sie hier, um einen Text einzugeben.

Wird geladen