Summer 2023
Bachelor / Undergraduate
Projektgruppen
Wissensentdeckung und Maschinelles Lernen
Bachelor BA-INF 051
In dieser Projektgruppe werden grundlegende Algorithmen aus dem Bereich Maschinelles Lernen erarbeitet, diskutiert, implementiert und empirisch evaluiert.
Study Period: Undergraduate / Grundstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke
Contact: Florian Seiffarth
Details
Time: Vorbesprechung am 05.04.2023 10:00-11:00
Place: CP1-HSZ / Hörsaal 7
Participants: Maximal 6
Beschreibung:In der Projektgruppe werden grundlegende Algorithmen aus dem Bereich Maschinelles Lernen vorgestellt. Die Aufgabe der Studierenden ist es, in Kleingruppen jeweils einen Algorithmus zu erarbeiten und einen wissenschaftlichen Vortrag darüber zu halten. Im Anschluss soll der Algorithmus implementiert und evaluiert werden. Neben einem Abschlussvortrag soll eine schriftliche Ausarbeitung erstellt werden.
Kursmaterialien
- Sind bei eCampus verfügbar.
- Wie man Zugriff zu eCampus erhält, erfahren Sie hier.
Wichtige Termine
- Die Vorbesprechung der Veranstaltungen Projektgruppe Wissensentdeckung und Maschinelles Lernen: Maschinelles Lernen und Projektgruppe Wissensentdeckung und Maschinelles Lernen: Wissensentdeckung werden gemeinsam stattfinden.
- Vorbesprechungstermin: 05.04.2023 10:00-11:00
-
Bitte registrieren Sie sich im ecampus Kurs bis zum 04.04.2023, um an der Vorbesprechung teilzunehmen.
(Computer) Science Communication
Bachelor BA-INF 051
In dieser Projektgruppe werden grundlegende Algorithmen aus den Bereichen Wissensentdeckung und Data Mining erarbeitet und diskutiert. Im Mittelpunkt steht die Erarbeitung der Inhalte für verschiedene Zielgruppen. Die Aufgabe der Studierenden ist die Vermittlung von Wissen in Form eines Coding Nuggets als praktische Anleitung für Fachleute als auch in Form eines Blog Beitrags für interessierte Laien.
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke, Florian Seiffarth
Contact: Florian Seiffarth
Details
Time: Vorbesprechung am 05.04.2023 10:00-11:00
Place: CP1-HSZ / Hörsaal 7
Participants: Maximal 6
Beschreibung:In den Projektgruppen werden grundlegende Algorithmen aus den Bereichen Maschinelles Lernen, Wissensentdeckung und Data Mining vorgestellt. Die Aufgabe der Studierenden ist es, in Kleingruppen jeweils einen Algorithmus zu erarbeiten und einen wissenschaftlichen Vortrag darüber zu halten. Im Anschluss wird eine schriftliche Ausarbeitung in zweierlei Form für zwei unterschiedliche Zielgruppen erstellt: Fachleute und interessierte Laien. Dabei wird auf die unterschiedlichen Anforderungen bei der Wissenvermittlung für unterschiedliche Zielgruppen eingegangen.
Kursmaterialien
Wichtige Termine
- Vorbesprechung: 05.04.2023 10:00-11:00 in CP1-HSZ / Hörsaal 7.
Master / Graduate
Lectures/Vorlesungen
Intelligent Learning and Analysis Systems: Data Mining and Knowledge Discovery
Master: MA-INF 4112
Introductory course to data mining and knowledge discovery.
Study Period: Graduate / Hauptstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath
Exrcises: Fouad Alkhoury
Contact: Dr. Tamas Horvath
Details
Start date: 2023-04-14
Time: Fr 12:15-13:45 s.t.
Place:
Exercise time: Fr 14:00-15:30 s.t.
Exercise place:
- B-IT Lecture Hall, Room 0.109, Friedrich-Hirzebruch-Alle 6 (Exercise Class I)
- TBA (Exercise Class II)
Tutors:
- Johanna Luz (Exercise Class I)
-
Luke Schulze (Exercise Class II)
Description:
With more and more data available for analysis and decision making - from web documents and digital media to sensory data from cameras, microphones, and ubiquitous devices - it becomes increasingly more important to understand how such large volumes of data can be analyzed by computers and used as the basis for new intelligent services, for decision making, and for making computers learn from experience. In companies around the world, from retail and banks all the way to Google, intelligent learning and analysis techniques are used to improve business decisions. Likewise, in science, important discoveries are made easier by automated learning methods, and games and other artifacts are being made adaptive with learning technology.
Within the intelligent systems track of the computer science Master's program, intelligent learning and analysis systems are one of the two major topics. This module (Data Mining) is one of the two modules that are offered as an introduction for master's students to Intelligent Learning and Analysis Systems. The other is the Machine Learning module taught in the winter semester. Both modules can be selected in either order, and you may choose to attend one or both of them. For a complete introduction to the topic, it is recommended to attend both modules.
In the Data Mining module in particular, we will focus more on the algorithms for discovering knowledge in large databases and on their technical properties such as scalability. We will get to know scalable variants of the decision tree methods that we have been looking at in the Machine Learning module, and discover algorithms for new Data Mining tasks that we have not been looking at there, in particular clustering, association rule discovery, subgroup discovery, discovery from spatial and geographic data, analysis algorithm for text and web documents, visualization options for data analysis. We will mostly be focusing on practical and algorithmic aspects which can be tried out with popular Data Mining packages, but will also have a chance to look at some of the theory behind the algorithms.
Course Organization & Materials
- Materials and Zoom links are available via eCampus. You must enroll in eCampus on or before April 13. (Read how to access eCampus)
Important Dates
-
exam
- 1st try: TBA
- 2nd try: TBA
Data Science and Big Data
Master: MA-INF 4212
Advanced course on big data analytics and systems.
Study Period: Graduate / Hauptstudium
Lecturer: Dr. Tamas Horvath, PD Dr. Michael Mock
Exercises: Eike Stadtländer
Contact: Dr. Tamas HorvathDetails
Start date: 2023-04-12
Time: Wed 10:15-11:45 s.t.
Place:
Exercise time: Wed 12:00-13:30 s.t.
Exercise place:
The course offers an in-depth knowledge of different aspects of big data analytics and systems, including algorithmic techniques for analyzing structured and unstructured data that cannot be stored in a single computer because it has enormous size and/or continuously arrives with such a high rate that requires immediate processing. In addition to the algorithmic aspects, distributed big data processing and database systems will be presented and applied.
Topics include similarity search, synopses for massive data, mining massive graphs, classical data mining tasks for massive data and/or data streams, architectures and protocols for big data systems, distributed batch (Hadoop) and stream (Storm) processing systems, non-standard databases for big data (Cassandra).
Course Organization & Materials
- Materials and Zoom links are available via eCampus. You must enroll in eCampus on or before April 11. (Read how to access eCampus)
Important Dates
-
exam
- 1st try: TBA
- 2nd try: TBA
Quantum Computing Algorithms
Master: MA-INF 1224
Lecturer: Prof. Dr. Christian Bauckhage
Contact: Prof. Dr. Christian Bauckhage
Exercises: Patrick Seifner
Details
Start date: 2023-04-03
Time: Mondays 12.15-14.45
Place: Hörsaal IV, Meckenheimer Allee 176
Exercise time: Mondays 14:15-15:45, every two weeks starting from 2023-04-03
Exercise place: tba
Course Materials
Important Dates
- first exam: tba
- second exam: tba
Seminars/Seminare
Principles of Data Mining and Learning Algorithms:
Selected Papers from NeurIPS
Master: MA-INF 4209
In this seminar we will focus on a selected few papers from last year's NeurIPS conference, which is one of the premier conferences in machine learning. The seminar consists of a discussion meeting, and final presentation meetings, which will simulate a scientific conference with paper presentations.
Study Period: Graduate / Hauptstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke, Till Schulz
Contact: Till Schulz
Supervisors: Fouad Alkhoury, Till Schulz
Prerequisites: MA-INF 4111 highly recommended
Details
Time: 2023-04-05 at 11 am
Preliminary meeting: online (see link on ecampus)
Participants: Max. 6
Course Materials
Important Dates
- The (mandatory) preliminary meeting is on 2023-04-05 at 11 am. Please register in the ecampus course until 2023-04-04, to be able to attend the preliminary meeting. We will make a link to the meeting available on ecampus.
Seminar Principles of Data Mining and Learning Algorithms: Ethics in AI
Master: MA-INF 4209
In this seminar we will focus on a selected few papers from last year's NeurIPS conference, which is one of the premier conferences in machine learning. The seminar consists of a discussion meeting, and final presentation meetings, which will simulate a scientific conference with paper presentations.
Study Period: Graduate / Hauptstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke, Eike Stadtländer, Sebastian Müller
Contact: Eike Stadtländer
Supervisors: Eike Stadtländer, Sebastian Müller
Prerequisites: MA-INF 4111 highly recommended
Details
Time: 2023-04-05 at 11 am
Preliminary meeting: online (see link on ecampus)
Participants: Max. 6
Course Materials
Important Dates
- The (mandatory) preliminary meeting is on 2023-04-05 at 11 am. Please register in the ecampus course until 2023-04-04, to be able to attend the preliminary meeting. We will make a link to the meeting available on ecampus.
Labs/Praktika
Lab Development and Application of Data Mining and Learning Systems: Data Mining
Master: MA-INF 4306
In this lab, machine learning and data mining techniques are implemented and used in a wide range of applications.
Study Period: Graduate / Hauptstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke, Sebastian Müller, Vanessa Toborek
Contact: Sebastian Müller
Prerequisites: MA-INF 4212 highly recommended
Details
Participants: Max. 6
Course Materials
Important Dates
-
preliminary meeting: Thursday, 06.04.23, 1000h (see eCampus for details)
-
final presentation: tba
- lab report deadline: tba
Lab Development and Application of Data Mining and Learning Systems: Machine Learning
Master: MA-INF 4306
In this lab, machine learning and data mining techniques are implemented and used in a wide range of applications.
Study Period: Graduate / Hauptstudium
Lecturers: Prof. Dr. Stefan Wrobel, Dr. Tamas Horvath, Dr. Pascal Welke, Sebastian Müller, Vanessa Toborek
Contact: Vanessa Toborek
Prerequisites: MA-INF 4212 highly recommended
Details
Participants: Max. 6
Course Materials
Important Dates
- preliminary meeting: Thursday, 06.04.23, 1000h (see eCampus for details)
-
final presentation: tba
- lab report deadline: tba
Lab Development and Application of Data Mining and Learning Systems: Neural ODEs and stochastic processes for time series analysis
Master: MA-INF 4306
Neural ODEs provide an interface between machine learning and the modelling paradigm of differential equations. In this lab we will study the Neural ODE approach to the modelling of probability distributions that are define continuously in time. Such evolving probabilities define stochastic processes, the inference of which is typically intractable. We will study different approximations to this inference problem and apply them to real-world time series data.
Study Period: Graduate / Hauptstudium
Lecturers: Dr. Ramses Sanchez
Contact: Dr. Ramses Sanchez
Prerequisites: Basic notions of probability theory. Some experience training neural networks is useful.
Details
Time: rescheduled to Thursday, April 6 at 10.00 s.t.
Place: please register on eCampus
Participants: around. 6
Course Materials
- Are available via eCampus.
- Read how to access eCampus
Important Dates
-
preliminary meeting: April 3 at 14.00 s.t. (online)
-
final presentation: t.b.d.
-
lab report deadline: t.b.d.